Skip to main content
Log in

The effect of heat stress on gene expression, synthesis of steroids, and apoptosis in bovine granulosa cells

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Summer heat stress (HS) is a major contributing factor in low fertility in lactating dairy cows in hot environments. Heat stress inhibits ovarian follicular development leading to diminished reproductive efficiency of dairy cows during summer. Ovarian follicle development is a complex process. During follicle development, granulosa cells (GCs) replicate, secrete hormones, and support the growth of the oocyte. To obtain an overview of the effects of heat stress on GCs, digital gene expression profiling was employed to screen and identify differentially expressed genes (DEGs; false discovery rate (FDR) ≤ 0.001, fold change ≥2) of cultured GCs during heat stress. A total of 1211 DEGs including 175 upregulated and 1036 downregulated ones were identified, of which DEGs can be classified into Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The results suggested that heat stress triggers a dramatic and complex program of altered gene expression in GCs. We hypothesized that heat stress could induce the apoptosis and dysfunction of GCs. Real-time reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the expression of steroidogenic genes (steroidogenic acute regulatory protein (Star), cytochrome P-450 (CYP11A1), CYP19A1, and steroidogenic factor 1 (SF-1)) and apoptosis-related genes (caspase-3, BCL-2, and BAX). Radio immunoassay (RIA) was used to analyze the level of 17β-estradiol (E2) and progesterone (P4). We also assessed the apoptosis of GCs by flow cytometry. Our data suggested that heat stress induced GC apoptosis through the BAX/BCL-2 pathway and reduced the steroidogenic gene messenger RNA (mRNA) expression and E2 synthesis. These results suggest that the decreased function of GCs may cause ovarian dysfunction and offer an improved understanding of the molecular mechanism responsible for the low fertility in cattle in summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexandreanu IC, Lawson DM (2003) Heme oxygenase in the rat ovary: immunohistochemical localization and possible role in steroidogenesis. Exp Biol Med (Maywood) 228(1):59–63

    CAS  Google Scholar 

  • Alves BG, Alves KA, Lúcio AC, Martins MC, Silva TH, Alves BG, Braga LS, Silva TV, Viu MA, Beletti ME, Jacomini JO, Santos RM, Gambarini ML (2014) Ovarian activity and oocyte quality associated with the biochemical profile of serum and follicular fluid from Girolando dairy cows postpartum. Anim Reprod Sci 146:117–125

    Article  CAS  PubMed  Google Scholar 

  • Collier RJ, Stiening CM, Pollard BC, VanBaale MJ, Baumgard LH, Gentry PC, Coussens PM (2006) Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. J Anim Sci Suppl. E1-13

  • Collier R, Collier J, Rhoads RP, Baumgard L (2008) Genes involved in the bovine heat stress response. J Dairy Sci 91:445–454

    Article  CAS  PubMed  Google Scholar 

  • de Torres-Júnior JR S, de Pires FAM, de Sá WF, de Ferreira AM, Viana JH, Camargo LS, Ramos AA, Folhadella IM, Polisseni J, de Freitas C, Clemente CA, de Sá Filho MF, Paula-Lopes FF, Baruselli PS (2008) Effect of maternal heat-stress on follicular growth and oocyte competence in Bos indicus cattle. Theriogenology 69:155–166

    Article  CAS  Google Scholar 

  • Fu Y, He CJ, Ji PY, Zhuo ZY, Tian XZ, Wang F, Tan DX, Liu GS (2014) Effects of melatonin on the proliferation and apoptosis of sheep granulosa cells under thermal stress. Int J Mol Sci 15:21090–21104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrero-Netro HM, Chorfi Y, Price CA (2015) Effects of the mycotoxin deoxynivalenol on steroidogenesis and apoptosis in granulosa cells. Reproduction 149(6):555–561

    Article  CAS  PubMed  Google Scholar 

  • Harada T, Koi H, Kubota T, Aso T (2004) Haem oxygenase augments porcine granulosa cell apoptosis in vitro. J Endocrinol 181(1):191–205

    Article  CAS  PubMed  Google Scholar 

  • Hattori Y, Yamada S, Yamamoto M, Orisaka M, Mizutani T, Yoshida Y (2015) Ovarian mucinous adenocarcinoma with functioning stroma in postmenopausal women: aromatase and SF-1 expressions. J Ovarian Res 8(1):73

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatzirodos N, Hummitzsch K, Irving-Rodgers HF, Rodgers RJ (2015) Transcriptome comparisons identify new cell markers for theca interna and granulosa cells from small and large antral ovarian follicles. PLoS One 10(3):e0119800. doi:10.1371/journal.pone.0119800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Hutt KJ, Albertini DF (2007) An oocentric view of folliculogenesis and embryogenesis. Reprod Biomed Online 14:758–764

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Wakamiya K, Kohka M, Yamamoto Y, Okuda K (2013) Summer heat stress affects prostaglandin synthesis in the bovine oviduct. Reproduction 146:103–110

    Article  CAS  PubMed  Google Scholar 

  • Langhout DJ, Spicer LJ, Geisert RD (1991) Development of a culture system for bovine granulosa cells: effects of growth hormone, estradiol, and gonadotropins on cell proliferation, steroidogenesis, and protein synthesis. J Anim Sci 69:3321–3334

    Article  CAS  PubMed  Google Scholar 

  • Li L, Sun Y, Wu J, Li X, Luo M, Wang G (2015) The global effect of heat on gene expression in cultured bovine mammary epithelial cells. Cell Stress Chaperones 20:381–389

    Article  CAS  PubMed  Google Scholar 

  • McKenzie LJ, Pangas SA, Carson SA, Kovanci E, Cisneros P, Buster JE, Amato P, Matzuk MM (2004) Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod 19:2869–2874

    Article  CAS  PubMed  Google Scholar 

  • Mendelson CR, Jiang B, Shelton JM, Richardson JA, Hinshelwood MM (2005) Transcriptional regulation of aromatase in placenta and ovary. J Steroid Biochem Mol Biol 95:25–33

    Article  CAS  PubMed  Google Scholar 

  • Mosa A, Neunzig J, Gerber A, Zapp J, Hannemann F, Pilak P, Bernhardt R (2015) 2β- and 16β-hydroxylase activity of CYP11A1 and direct stimulatory effect of estrogens on pregnenolone formation. J Steroid Biochem Mol Biol 150:1–10

    Article  CAS  PubMed  Google Scholar 

  • Paixão LL, Gaspar-Reis RP, Gonzalez GP, Santos AS, Santana AC, Santos RM, Spritzer PM, Nascimento-Saba CC (2012) Cigarette smoke impairs granulosa cell proliferation and oocyte growth after exposure cessation in young Swiss mice: an experimental study. J Ovarian Res 5:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul S, Kim SJ, Park HW, Lee SY, An YR, Moon-Ju O, Jung JW, Ryu JC, Hwang SY (2011) Impact of miRNA deregulation on mRNA expression profiles in response to environmental toxicant, nonylphenol. Mol Cell Toxicol 7:259–269

    Article  CAS  Google Scholar 

  • Pescador N, Soumano K, Stocco DM, Price CA, Murphy BD (1996) Steroidogenic acute regulatory protein in bovine corpora lutea. Biol Reprod 55:485–491

    Article  CAS  PubMed  Google Scholar 

  • Petro EM, Leroy JL, Van Cruchten SJ, Covaci A, Jorssen EP, Bols PE (2012) Endocrine disruptors and female fertility: focus on (bovine) ovarian follicular physiology. Theriogenology 78:1887–1900

    Article  CAS  PubMed  Google Scholar 

  • Rawan AF, Yoshioka S, Abe H, Acosta TJ (2015) Insulin-like growth factor-1 regulates the expression of luteinizing hormone receptor and steroid production in bovine granulosa cells. Reprod Domest Anim 50(2):283–291

    Article  CAS  PubMed  Google Scholar 

  • Rekawiecki R, Nowik M, Kotwica J (2005) Stimulatory effect of LH, PGE2 and progesterone on StAR protein, cytochrome P450 cholesterol side chain cleavage and 3beta hydroxysteroid dehydrogenase gene expression in bovine luteal cells. Prostaglandins Other Lipid Mediat 78:169–184

    Article  CAS  PubMed  Google Scholar 

  • Rispoli LA, Payton RR, Gondro C, Saxton AM, Nagle KA, Jenkins BW, Schrick FN, Edwards JL (2013) Heat stress effects on the cumulus cells surrounding the bovine oocyte during maturation: altered matrix metallopeptidase 9 and progesterone production. Reproduction 146:193–207

    Article  CAS  PubMed  Google Scholar 

  • Roth Z (2008) Heat stress, the follicle, and its enclosed oocyte: mechanisms and potential strategies to improve fertility in dairy cows. Reprod Domest Anim Suppl 2:238–244

    Article  Google Scholar 

  • Setroikromo R, Wierenga PK, van Waarde MA, Brunsting JF, Vellenga E, Kampinga HH (2007) Heat shock proteins and Bcl-2 expression and function in relation to the differential hyperthermic sensitivity between leukemic and normal hematopoietic cells. Cell Stress Chaperones 12(4):320–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shehab-E-Deen MA, Leroy JL, Fadel MS, Saleh SY, Maes D, Van Soom A (2011) Biochemical changes in the follicular fluid of the dominant follicle of high producing dairy cows exposed to heat stress early post-partum. Anim Reprod Sci 117:189–200

    Article  CAS  Google Scholar 

  • Shimizu T, Ohshima I, Ozawa M, Takahashi S, Tajima A, Shiota M, Miyazaki H, Kanai Y (2005) Heat stress diminishes gonadotropin receptor expression and enhances susceptibility to apoptosis of rat granulosa cells. Reproduction 129(4):463–472

    Article  CAS  PubMed  Google Scholar 

  • Sirotkin AV (2010) Effect of two types of stress (heat shock/high temperature and malnutrition/serum deprivation) on porcine ovarian cell functions and their response to hormones. J Exp Biol 213(Pt 12):2125–2130

    Article  CAS  PubMed  Google Scholar 

  • Sirotkin AV, Bauer M (2011) Heat shock proteins in porcine ovary: synthesis, accumulation and regulation by stress and hormones. Cell Stress Chaperones 16(4):379–387

    Article  CAS  PubMed  Google Scholar 

  • Sonna LA, Kuhlmeier MM, Khatri P, Chen D, Lilly CM (2010) A microarray analysis of the effects of moderate hypothermia and rewarming on gene expression by human hepatocytes (HepG2). Cell Stress Chaperones 15:687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatone C, Amicarelli F, Carbone MC, Monteleone P, Caserta D, Marci R, Artini PG, Piomboni P, Focarelli R (2008) Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update 14:131–142

    Article  CAS  PubMed  Google Scholar 

  • Wakayo BU, Brar PS, Prabhakar S (2015) Review on mechanisms of dairy summer infertility and implications for hormonal intervention. Open Vet J 5(1):6–10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wathlet S, Adriaenssens T, Segers I, Verheyen G, Van de Velde H, Coucke W, Ron ER, Devroey P, Smitz J (2011) Cumulus cell gene expression predicts better cleavage-stage embryo or blastocyst development and pregnancy for ICSI patients. Hum Reprod 26:1035–1051

    Article  CAS  PubMed  Google Scholar 

  • Wilson SJ, Marion RS, Spain JN, Spiers DE, Keisler DH, Lucy MC (1998) Effects of controlled heat stress on ovarian function of dairy cattle. J Dairy Sci 81:2124–2131

    Article  CAS  PubMed  Google Scholar 

  • Zhang JY, Wu Y, Zhao S, Liu ZX, Zeng SM, Zhang GX (2015) Lysosomes are involved in induction of steroidogenic acute regulatory protein (StAR) gene expression and progesterone synthesis through low-density lipoprotein in cultured bovine granulosa cells. Theriogenology 284(5):811–817

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 31501955) and the Fundamental Research Funds for the Central Universities (Grant No. KJQN201607).

Author contributions

Lian Li conceived and designed the experiments. Lian Li and Yu Sun performed the experiments. Lian Li analyzed the data. Jie Wu, Yu Sun, and Man Luo contributed reagents/materials/analysis tools. Lian Li and Genlin Wang wrote the paper. Yu Sun and Man Luo prepared the materials. Jie Wu helped analyze the data and in RT-PCR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lian Li or Genlin Wang.

Ethics declarations

Ethics statement

In the present experiment, animal care and procedures were approved and conducted under the established standards of Nanjing Agricultural University, Nanjing, China.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Analytical flowchart to study bovine granulosa cells transcriptome by DGEs (XLS 175 kb)

Table S2

Primer information. (XLS 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wu, J., Luo, M. et al. The effect of heat stress on gene expression, synthesis of steroids, and apoptosis in bovine granulosa cells. Cell Stress and Chaperones 21, 467–475 (2016). https://doi.org/10.1007/s12192-016-0673-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-016-0673-9

Keywords

Navigation