Skip to main content
Log in

Controlled downregulation of the cannabinoid CB1 receptor provides a promising approach for the treatment of obesity and obesity-derived type 2 diabetes

  • Perspective and Reflection Article
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Increased activity of the endocannabinoid system has emerged as a pathogenic factor in visceral obesity, which is a risk factor for type 2 diabetes mellitus (T2DM). The endocannabinoid system is composed of at least two G-protein-coupled receptors (GPCRs), the cannabinoid receptor type 1 (CB1), and the cannabinoid receptor type 2 (CB2). Downregulation of CB1 activity in rodents and humans has proven efficacious to reduce food intake, abdominal adiposity, fasting glucose levels, and cardiometabolic risk factors. Unfortunately, downregulation of CB1 activity by universally active CB1 inverse agonists has been found to elicit psychiatric side effects, which led to the termination of using globally active CB1 inverse agonists to treat diet-induced obesity. Interestingly, preclinical studies have shown that downregulation of CB1 activity by CB1 neutral antagonists or peripherally restricted CB1 inverse agonists provided similar anorectic effects and metabolic benefits without psychiatric side effects seen in globally active CB1 inverse agonists. Furthermore, downregulation of CB1 activity may ease endoplasmic reticulum and mitochondrial stress which are contributors to obesity-induced insulin resistance and type 2 diabetes. This suggests new approaches for cannabinoid-based therapy in the management of obesity and obesity-related metabolic disorders including type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

2-AG:

2-Arachidonoylglycerol

AEA:

Arachidonoylethanolamide

CB1:

Cannabinoid receptor type 1

CB2:

Cannabinoid receptor type 2

CRP:

C-reactive protein

CNS:

Central nervous system

EC:

Endocannabinoid

FAAH:

Fatty acid amide hydrolase

GPCR:

G-protein-coupled receptor

HbA1c:

Glycated hemoglobin

MAGL:

Monoacylglycerol lipase

T2DM:

Type 2 diabetes mellitus

ER:

Endoplasmic reticulum

References

  • Apovian CM et al (2008) Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol 28:1654–1659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ashcroft FM, Rorsman P (2012) Diabetes mellitus and the β cell: the last ten years. Cell 148:1160–1171

    Article  CAS  PubMed  Google Scholar 

  • Bastard J-P et al (2006) Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 17:4–12

    CAS  PubMed  Google Scholar 

  • Black S (2004) Cannabinoid receptor antagonists and obesity Current opinion in investigational drugs (London, England: 2000) 5:389-394

  • Blüher M et al (2006) Dysregulation of the peripheral and adipose tissue endocannabinoid system in human abdominal obesity. Diabetes 55:3053–3060

    Article  PubMed Central  PubMed  Google Scholar 

  • Buxton OM et al (2012) Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci Transl Med 4:129ra143

    Google Scholar 

  • Chorvat RJ (2013) Peripherally restricted CB1 receptor blockers. Bioorg Med Chem Lett 23:4751–4760

    Article  CAS  PubMed  Google Scholar 

  • Chorvat RJ, Berbaum J, Seriacki K, McElroy JF (2012) JD-5006 and JD-5037: peripherally restricted (PR) cannabinoid-1 receptor blockers related to SLV-319 (Ibipinabant) as metabolic disorder therapeutics devoid of CNS liabilities. Bioorg Med Chem Lett 22:6173–6180

    Article  CAS  PubMed  Google Scholar 

  • Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A (2007) Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370:1706–1713

    Article  CAS  PubMed  Google Scholar 

  • Christopoulou F, Kiortsis D (2011) An overview of the metabolic effects of rimonabant in randomized controlled trials: potential for other cannabinoid 1 receptor blockers in obesity. J Clin Pharm Ther 36:10–18

    Article  CAS  PubMed  Google Scholar 

  • Cinti S et al (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46:2347–2355

    Article  CAS  PubMed  Google Scholar 

  • Cluny N et al (2010) A novel peripherally restricted cannabinoid receptor antagonist, AM6545, reduces food intake and body weight, but does not cause malaise, in rodents. Br J Pharmacol 161:629–642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cnop M, Foufelle F, Velloso LA (2012) Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med 18:59–68

    Article  CAS  PubMed  Google Scholar 

  • Cota D et al (2003) The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Investig 112:423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cote M, Matias I, Lemieux I, Petrosino S, Almeras N, Despres J, Di Marzo V (2007) Circulating endocannabinoid levels, abdominal adiposity and related cardiometabolic risk factors in obese men. Int J Obes 31:692–699

    CAS  Google Scholar 

  • Dahlén EM, Tengblad A, Länne T, Clinchy B, Ernerudh J, Nystrom F, Östgren C (2014) Abdominal obesity and low-grade systemic inflammation as markers of subclinical organ damage in type 2 diabetes. Diabete Metab 40:76–81

    Article  PubMed  Google Scholar 

  • De Kloet AD, Woods SC (2009) Endocannabinoids and their receptors as targets for obesity therapy. Endocrinology 150:2531–2536

    Article  PubMed  Google Scholar 

  • Després J-P, Golay A, Sjöström L (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353:2121–2134

    Article  PubMed  Google Scholar 

  • Di Marzo V (2008) The endocannabinoid system in obesity and type 2 diabetes. Diabetologia 51:1356–1367

    Article  CAS  PubMed  Google Scholar 

  • Di Marzo V, Matias I (2005) Endocannabinoid control of food intake and energy balance. Nat Neurosci 8:585–589

    Article  PubMed  Google Scholar 

  • Di Marzo V et al (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410:822–825

    Article  PubMed  Google Scholar 

  • Di Marzo V, Bifulco M, De Petrocellis L (2004) The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov 3:771–784

    Article  PubMed  Google Scholar 

  • Diez JJ, Iglesias P (2003) The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 148:293–300

    Article  CAS  PubMed  Google Scholar 

  • Donath MY (2014) Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov 13:465–476

    Article  CAS  PubMed  Google Scholar 

  • Dow RL et al (2012) Design of a potent CB1 receptor antagonist series: potential scaffold for peripherally-targeted agents. ACS Med Chem Lett 3:397–401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doyle ME et al. (2011) Cannabinoids Inhibit Insulin Receptor Signaling in Pancreatic\(\ beta\)-Cells

  • Duvivier VF et al (2009) Beneficial effect of a chronic treatment with rimonabant on pancreatic function and β-cell morphology in Zucker Fatty rats. Eur J Pharmacol 616:314–320

    Article  CAS  PubMed  Google Scholar 

  • Eckardt K et al (2009) Cannabinoid type 1 receptors in human skeletal muscle cells participate in the negative crosstalk between fat and muscle. Diabetologia 52:664–674

    Article  CAS  PubMed  Google Scholar 

  • Eckel RH et al (2011) Obesity and type 2 diabetes: what can be unified and what needs to be individualized? J Clin Endocrinol Metab 96:1654–1663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Engeli S (2008) Dysregulation of the endocannabinoid system in obesity. J Neuroendocrinol 20:110–115

    Article  CAS  PubMed  Google Scholar 

  • Engeli S et al (2005) Activation of the peripheral endocannabinoid system in human obesity. Diabetes 54:2838–2843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flamment M, Gueguen N, Wetterwald C, Simard G, Malthièry Y, Ducluzeau P-H (2009) Effects of the cannabinoid CB1 antagonist rimonabant on hepatic mitochondrial function in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 297:E1162–E1170

    Article  CAS  PubMed  Google Scholar 

  • Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S (2007) Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 56:1010–1013

    Article  CAS  PubMed  Google Scholar 

  • Getty‐Kaushik L, Richard AMT, Deeney JT, Krawczyk S, Shirihai O, Corkey BE (2009) The CB1 antagonist rimonabant decreases insulin hypersecretion in rat pancreatic islets. Obesity 17:1856–1860

    Article  PubMed  Google Scholar 

  • Gómez R et al (2002) A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosci 22:9612–9617

    PubMed  Google Scholar 

  • Goossens GH (2008) The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav 94:206–218

    Article  CAS  PubMed  Google Scholar 

  • Guariguata L, Whiting D, Hambleton I, Beagley J, Linnenkamp U, Shaw J (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes research and clinical practice 103:137–149

    Article  CAS  PubMed  Google Scholar 

  • Hameed I, Masoodi SR, Mir SA, Nabi M, Ghazanfar K, Ganai BA (2015) Type 2 diabetes mellitus: from a metabolic disorder to an inflammatory condition. World J Diabetes 6:598

    PubMed Central  PubMed  Google Scholar 

  • Herder C, Roden M (2011) Genetics of type 2 diabetes: pathophysiologic and clinical relevance. Eur J Clin Investig 41:679–692

    Article  Google Scholar 

  • Hollander PA, Amod A, Litwak LE, Chaudhari U (2010) Effect of rimonabant on glycemic control in insulin-treated type 2 diabetes: the ARPEGGIO trial. Diabetes Care 33:605–607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horswill J et al (2007) PSNCBAM‐1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats. Br J Pharmacol 152:805–814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hortala L et al (2010) Rational design of a novel peripherally-restricted, orally active CB 1 cannabinoid antagonist containing a 2,3-diarylpyrrole motif. Bioorg Med Chem Lett 20:4573–4577

    Article  CAS  PubMed  Google Scholar 

  • Hotamisligil G (2008) Inflammation and endoplasmic reticulum stress in obesity and diabetes. Int J Obes 32:S52–S54

    Article  CAS  Google Scholar 

  • Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91

    Article  CAS  PubMed  Google Scholar 

  • Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Investig 95:2409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Howard JK, Flier JS (2006) Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol Metab 17:365–371

    Article  CAS  PubMed  Google Scholar 

  • Iranmanesh A, Rosenstock J, Hollander P (2006) SERENADE: rimonabant monotherapy for treatment of multiple cardiometabolic risk factors in treatment-naive patients with type 2 diabetes. Diabet Med 23:230

    Google Scholar 

  • Janero DR, Makriyannis A (2009) Cannabinoid receptor antagonists: pharmacological opportunities, clinical experience, and translational prognosis

  • Janiak P et al (2007) Blockade of cannabinoid CB1 receptors improves renal function, metabolic profile, and increased survival of obese Zucker rats. Kidney Int 72:1345–1357

    Article  CAS  PubMed  Google Scholar 

  • Jbilo O et al (2005) The CB1 receptor antagonist rimonabant reverses the diet-induced obesity phenotype through the regulation of lipolysis and energy balance. FASEB J 19:1567–1569

    CAS  PubMed  Google Scholar 

  • Jourdan T, Djaouti L, Demizieux L, Gresti J, Vergès B, Degrace P (2010) CB1 antagonism exerts specific molecular effects on visceral and subcutaneous fat and reverses liver steatosis in diet-induced obese mice. Diabetes 59:926–934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jourdan T, Demizieux L, Gresti J, Djaouti L, Gaba L, Vergès B, Degrace P (2012) Antagonism of peripheral hepatic cannabinoid receptor‐1 improves liver lipid metabolism in mice: evidence from cultured explants. Hepatology 55:790–799

    Article  CAS  PubMed  Google Scholar 

  • Jourdan T et al (2013) Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat Med 19:1132–1140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kammoun HL et al (2009) GRP78 expression inhibits insulin and ER stress–induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest 119:1201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim W et al (2012) Cannabinoids induce pancreatic β-cell death by directly inhibiting insulin receptor activation Science signaling 5:ra23

  • Klein S, Sheard N, Pi-Sunyer X, Daly A, Wylie-Rosett J, Kulkarni K, Clark NG (2004) Weight management through lifestyle modification for the prevention and management of type 2 diabetes: rational and strategies: a statement of the American Diabetes Association, the North American Association for the Study of Obesity, and the American Society for Clinical Nutrition. Am J Clin Nutr 80:257–263

    CAS  PubMed  Google Scholar 

  • Kunos G, Tam J (2011) The case for peripheral CB1 receptor blockade in the treatment of visceral obesity and its cardiometabolic complications. Br J Pharmacol 163:1423–1431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lange J, Kruse C (2004) Recent advances in CB1 cannabinoid receptor antagonists. Curr Opin Drug Discov Dev 7:498–506

    CAS  Google Scholar 

  • Lebrun P, Van Obberghen E (2008) SOCS proteins causing trouble in insulin action. Acta Physiol 192:29–36

    Article  CAS  Google Scholar 

  • Leem J, Koh EH (2011) Interaction between mitochondria and the endoplasmic reticulum: implications for the pathogenesis of type 2 diabetes mellitus Experimental diabetes research 2012

  • Li P et. al (2015) LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes Nature medicine

  • Lim JH, Lee HJ, Jung MH, Song J (2009) Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: a molecular mechanism leading to hepatic insulin resistance. Cell Signal 21:169–177

    Article  CAS  PubMed  Google Scholar 

  • Lipina C, Irving AJ, Hundal HS (2014) Mitochondria: a possible nexus for the regulation of energy homeostasis by the endocannabinoid system? Am J Physiol Endocrinol Metab 307:E1–E13

    Article  CAS  PubMed  Google Scholar 

  • Liu J et al (2012) Hepatic cannabinoid receptor-1 mediates diet-induced insulin resistance via inhibition of insulin signaling and clearance in mice. Gastroenterology 142:1218–1228. e1211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lynch CJ et al (2012) Some cannabinoid receptor ligands and their distomers are direct-acting openers of SUR1 KATP channels. Am J Physiol Endocrinol Metab 302:E540–E551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moreira FA, Crippa JAS (2009) The psychiatric side-effects of rimonabant. Rev Bras Psiquiatr 31:145–153

    Article  PubMed  Google Scholar 

  • Osei-Hyiaman D et al (2005) Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Investig 115:1298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ozawa K et al (2005) The endoplasmic reticulum chaperone improves insulin resistance in type 2 diabetes. Diabetes 54:657–663

    Article  CAS  PubMed  Google Scholar 

  • Özcan U et al (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–1140

    Article  PubMed  Google Scholar 

  • Pacher P, Bátkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R (2006) The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 27:73–100

    Article  CAS  PubMed  Google Scholar 

  • Pertwee R et al (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perwitz N et al (2010) Cannabinoid type 1 receptor blockade induces transdifferentiation towards a brown fat phenotype in white adipocytes. Diabetes Obes Metab 12:158–166

    Article  CAS  PubMed  Google Scholar 

  • Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–884

    Article  CAS  PubMed  Google Scholar 

  • Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J, Group R-NAS (2006) Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295:761–775

    Article  CAS  PubMed  Google Scholar 

  • Quarta C, Mazza R, Obici S, Pasquali R, Pagotto U (2011) Energy balance regulation by endocannabinoids at central and peripheral levels. Trends Mol Med 17:518–526

    Article  CAS  PubMed  Google Scholar 

  • Rieusset J (2011) Mitochondria and endoplasmic reticulum: mitochondria–endoplasmic reticulum interplay in type 2 diabetes pathophysiology. Int J Biochem Cell Biol 43:1257–1262

    Article  CAS  PubMed  Google Scholar 

  • Rohrbach K et al (2012) Ibipinabant attenuates β‐cell loss in male Zucker diabetic fatty rats independently of its effects on body weight. Diabetes Obes Metab 14:555–564

    Article  CAS  PubMed  Google Scholar 

  • Rosenstock J, Hollander P, Chevalier S, Iranmanesh A (2008) SERENADE: The Study Evaluating Rimonabant Efficacy in Drug-Naive Diabetic Patients Effects of monotherapy with rimonabant, the first selective CB1 receptor antagonist, on glycemic control, body weight, and lipid profile in drug-naive type 2 diabetes*. Diabetes Care 31:2169–2176

    Article  PubMed Central  PubMed  Google Scholar 

  • Ross RA, Baillie GL, Pertwee RG (2012) Allosteric modulation of cannabinoid CB1 receptor. FASEB J 26:836

    Google Scholar 

  • Scheen AJ (2007) Cannabinoid-1 receptor antagonists in type-2 diabetes. Best Pract Res Clin Endocrinol Metab 21:535–553

    Article  CAS  PubMed  Google Scholar 

  • Scheen AJ, Finer N, Hollander P, Jensen MD, Van Gaal LF, Group R-DS (2006) Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet 368:1660–1672

    Article  CAS  PubMed  Google Scholar 

  • Shi S-q, Ansari TS, McGuinness OP, Wasserman DH, Johnson CH (2013) Circadian disruption leads to insulin resistance and obesity. Curr Biol 23:372–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silvestri C, Di Marzo V (2012) Second generation CB1 receptor blockers and other inhibitors of peripheral endocannabinoid overactivity and the rationale of their use against metabolic disorders. Expert Opin Investig Drugs 21:1309–1322

    Article  CAS  PubMed  Google Scholar 

  • Simiand J, Keane M, Keane P, Soubrie P (1998) SR 141716, a CB1 cannabinoid receptor antagonist, selectively reduces sweet food intake in marmoset. Behav Pharmacol 9:179–181

    CAS  PubMed  Google Scholar 

  • Sipe JC, Scott TM, Murray S, Harismendy O, Simon GM, Cravatt BF, Waalen J (2010) Biomarkers of endocannabinoid system activation in severe obesity. PLoS One 5:e8792

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith RA, Fathi Z (2005) Recent advances in the research and development of CB1 antagonists. IDrugs Investig Drugs J 8:53–66

    CAS  Google Scholar 

  • Son M et al (2010) Peripherally acting CB1-receptor antagonist: the relative importance of central and peripheral CB1 receptors in adiposity control. Int J Obes 34:547–556

    Article  CAS  Google Scholar 

  • Spranger J et al (2003) Inflammatory cytokines and the risk to develop type 2 diabetes results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52:812–817

    Article  CAS  PubMed  Google Scholar 

  • Tam J et al (2010) Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J Clin Invest 120:2953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tam J et al (2012) Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance. Cell Metab 16:167–179

    Article  CAS  PubMed  Google Scholar 

  • Tedesco L et al (2008) Cannabinoid type 1 receptor blockade promotes mitochondrial biogenesis through endothelial nitric oxide synthase expression in white adipocytes. Diabetes 57:2028–2036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tedesco L et al (2010) Cannabinoid receptor stimulation impairs mitochondrial biogenesis in mouse white adipose tissue, muscle, and liver: the role of eNOS, p38 MAPK, and AMPK pathways. Diabetes 59:2826–2836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trillou CR, Arnone M, Delgorge C, Gonalons N, Keane P, Maffrand J-P, Soubrié P (2003) Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. Am J Physiol Regul Integr Comp Physiol 284:R345–R353

    Article  CAS  Google Scholar 

  • Tripathi YB, Pandey V (2012) Obesity and endoplasmic reticulum (ER) stresses Frontiers in immunology 3

  • Unger RH, Orci L (2001) Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J 15:312–321

    Article  CAS  PubMed  Google Scholar 

  • Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rössner S, Group R-ES (2005) Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365:1389–1397

    Article  PubMed  Google Scholar 

  • Van Gaal LF, Scheen AJ, Rissanen AM, Rössner S, Hanotin C, Ziegler O (2008) Long-term effect of CB1 blockade with rimonabant on cardiometabolic risk factors: two year results from the RIO-Europe Study†. Eur Heart J 29:1761–1771

    Article  PubMed  Google Scholar 

  • Van Greevenbroek M, Schalkwijk C, Stehouwer C (2013) Obesity-associated low-grade inflammation in type 2 diabetes mellitus: causes and consequences. Neth J Med 71:174–187

    PubMed  Google Scholar 

  • Wong A et al (2012) The major plant-derived cannabinoid Δ9-tetrahydrocannabinol promotes hypertrophy and macrophage infiltration in adipose tissue. Horm Metab Res 44:105

    Article  CAS  PubMed  Google Scholar 

  • Wu Y-K, Yeh C-F, Ly TW, Hung M-S (2011) A new perspective of cannabinoid 1 receptor antagonists: approaches toward peripheral CB1R blockers without crossing the blood-brain barrier. Curr Top Med Chem 11:1421–1429

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T et al (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang S et al (2014) The pathogenic mechanism of diabetes varies with the degree of overexpression and oligomerization of human amylin in the pancreatic islet β cells. FASEB J 28:5083–5096

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Kwang Hyun Ahn for his assistance with the manuscript. This work was supported in part by a National Institutes of Health Grant DA020763 (to D.A.K.) and a Faculty Development Fund from Texas A&M Health Sciences Center (to D.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debra A. Kendall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Dopart, R. & Kendall, D.A. Controlled downregulation of the cannabinoid CB1 receptor provides a promising approach for the treatment of obesity and obesity-derived type 2 diabetes. Cell Stress and Chaperones 21, 1–7 (2016). https://doi.org/10.1007/s12192-015-0653-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-015-0653-5

Keywords

Navigation