Skip to main content
Log in

The identification and characteristics of salinity-related microRNAs in gills of Portunus trituberculatus

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally regulate gene expression in organisms. To understand the underlying mechanisms behind the molecular response of the crab to low salt-stress, high-throughput Illumina/Solexa deep sequencing technology was used to investigate the expression profiles of miRNAs under low salinity challenged. Two mixed RNA pool libraries of gill tissues from low salinity challenged (LC) and the control groups (NC) were sequenced on the Illumina platform. A total of 6,166,057 and 7,032,973 high-quality reads were obtained from the NC and LC libraries, respectively. Sixty-seven miRNAs consisting of 16 known and 51 novel ones were identified, among which, 12 miRNAs were differentially expressed in LC compared to NC. Thirty-four of the target genes predicted were differentially expressed in the opposite direction to the miRNAs, which were involved in crucial processes related to osmoregulation by gene ontology (GO) functional enrichment analysis, such as anion transport processes (GO:0006820) and chitin metabolic process (GO:0006030). These results provide a basis for further investigation of the miRNA-modulating networks in osmoregulation of Portunus trituberculatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bourbonnais Y, Faucher N, Pallotta D, Larouche C (2001) Multiple cellular processes affected by the absence of the Rpb4 subunit of RNA polymerase II contribute to the deficiency in the stress response of the yeast rpb4 delta mutant. Mol Gen Genet 264:763–772

    Article  CAS  PubMed  Google Scholar 

  • Cohen SM, Bushati N (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  PubMed  Google Scholar 

  • Callahan BP, Miller BG (2007) OMP decarboxylase—an enigma persists. Bioorg Chem 35:465–469

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Ren J, Shi H, Zhang Y, You Y, Fan J, Chen K, Liu S, Nevo E, Fu J, Peng J (2015) TdCBL6, a calcineurin B-like gene from wild emmer wheat (Triticum dicoccoides), is involved in response to salt and low-K+ stresses. Mol Breed 35:1. doi:10.1007/s11032-015-0229-1

    Article  Google Scholar 

  • Chen Y, Chen X, Wang H, Bao Y, Zhang W (2014) Examination of the leaf proteome during flooding stress and the induction of programmed cell death in maize. Proteome Sci 12:33. doi:10.1186/1477-5956-12-33

    Article  PubMed Central  PubMed  Google Scholar 

  • Enright A.J, John B, Gaul U, Tuschl T, Chris S, Marks, DS (2003). 2003 Enright Et Volume Al. 5, Issue 1, Article R1 Open Access Research Microrna Targets In Drosophila. Genome Biol, 5:R1: R1.

  • Foronda D, Weng R, Verma P, Chen Y-W, Cohen SM (2014) Coordination of insulin and notch pathway activities by microRNA miR-305 mediates adaptive homeostasis in the intestinal stem cells of the Drosophila gut. Genes Dev 28:2421–2431. doi:10.1101/gad.241588.114

    Article  PubMed Central  PubMed  Google Scholar 

  • Frazier TP, Sun G, Burklew CE, Zhang B (2011) Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol 49:159–165. doi:10.1007/s12033-011-9387-5

    Article  CAS  PubMed  Google Scholar 

  • Fricke C, Green D, Smith D, Dalmay T, Chapman T (2014) MicroRNAs influence reproductive responses by females to male sex peptide in Drosophila melanogaster. Genetics 198:1603. doi:10.1534/genetics.114.167320

    Article  PubMed Central  PubMed  Google Scholar 

  • Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40:37–52

    Article  PubMed Central  PubMed  Google Scholar 

  • Glazov EA, Cottee PA, Barris WC, Moore RJ, Dalrymple BP, Tizard ML (2008) A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res 18:957–964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gu Z, Ma B, Jiang Y, Chen Z, Su X, Zhang H (2008) Expression analysis of the calcineurin B-like gene family in rice (Oryza sativa L.) under environmental stresses. Gene 415:1–12. doi:10.1016/j.gene.2008.02.011

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horikawa S, Sasuga J, Shimizu K, Ozasa H, Tsukada K (1990) Molecular cloning and nucleotide sequence of cDNA encoding the rat kidney S-adenosylmethionine synthetase. J Biol Chem 265:13683–13686

    CAS  PubMed  Google Scholar 

  • Huang Y, Ma F, Wang W, Ren Q (2015) Identification and molecular characterization of a peritrophin-like gene, involved in the antibacterial response in Chinese mitten crab, Eriocheir sinensis. Dev Comp Immunol 50:129–138. doi:10.1016/j.dci.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  • Hui M, Liu Y, Song C, Li Y, Shi G, Cui Z (2014) Transcriptome changes in Eriocheir sinensis megalopae after desalination provide insights into osmoregulation and stress adaption in larvae. PLoS ONE 9:e114187

    Article  PubMed Central  PubMed  Google Scholar 

  • Ikeda KT, Hirose Y, Hiraoka K, Noro E, Fujishima K, Tomita M, Kanai A (2015) Identification, expression, and molecular evolution of microRNAs in the “living fossil” Triops cancriformis (tadpole shrimp). Rna Publ Rna Soc 21:230–242. doi:10.1261/rna.045799.114

    Article  Google Scholar 

  • Kamal AHM, Cho K, Kim D-E, Uozumi N, Chung K-Y, Lee SY, Choi J-S, Cho S-W, Shin C-S, Woo SH (2012) Changes in physiology and protein abundance in salt-stressed wheat chloroplasts. Mol Biol Rep 39:9059–9074. doi:10.1007/s11033-012-1777-7

    Article  CAS  PubMed  Google Scholar 

  • Kaufman S (1999) A model of human phenylalanine metabolism in normal subjects and in phenylketonuric patients. Proc Natl Acad Sci 96:3160–3164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S, (2013). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res: gkt1181.

  • Kwast KE, Lai LC, Menda N, James DT, Aref S, Burke PV (2002) Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: functional roles of Rox1 and other factors in mediating the anoxic response. J Bacteriol 184:250–265. doi:10.1128/jb.184.1.250-265.2002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li SK, Zhu S, Li CB, Zhang Z, Zhou LZ, Wang SJ, Wang SQ, Zhang YL, Wen XB (2013) Characterization of microRNAs in mud crab Scylla paramamosain under Vibrio parahaemolyticus infection. PLoS ONE 8:e73392. doi:10.1371/journal.pone.0073392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loongyai W, Avarre J-C, Cerutti M, Lubzens E, Chotigeat W (2007) Isolation and functional characterization of a new shrimp ovarian peritrophin with antimicrobial activity from Fenneropenaeus merguiensis. Mar Biotechnol 9:624–637. doi:10.1007/s10126-007-9019-z

    Article  CAS  PubMed  Google Scholar 

  • Lv J, Liu P, Wang Y, Gao B, Chen P, Li J (2013) Transcriptome analysis of Portunus trituberculatus in response to salinity stress provides insights into the molecular basis of osmoregulation. PLoS ONE 8:e82155. doi:10.1371/journal.pone.0082155

    Article  PubMed Central  PubMed  Google Scholar 

  • Lv J, Zhang D, Gao B, Liu P, Li J (2015) Transcriptome and MassARRAY analysis for identification of transcripts and SNPs for growth traits of the swimming crab Portunus trituberculatus. Gene 566:229–235

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Hostuttler M, Wei HR, Rexroad CE, Yao JB (2012) Characterization of the rainbow trout egg MicroRNA transcriptome. PLoS ONE 7:E39649. doi:10.1371/journal.pone.0039649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nilsen TW (2007) Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 23:243–249

    Article  CAS  PubMed  Google Scholar 

  • Ou J, Meng Q, Li Y, Xiu Y, Du J, Gu W, Wu T, Li W, Ding Z, Wang W (2012) Identification and comparative analysis of the Eriocheir sinensis microRNA transcriptome response to Spiroplasma eriocheiris infection using a deep sequencing approach. Fish Shellfish Immunol 32:345–352. doi:10.1016/j.fsi.2011.11.027

    Article  CAS  PubMed  Google Scholar 

  • Péqueux A (1995) Osmotic regulation in crustaceans. J Crust Biol 15:1–60

    Article  Google Scholar 

  • Peng Z, He S, Gong W, Sun J, Pan Z, Xu F, Lu Y, Du X (2014) Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. BMC Genomics 15:760. doi:10.1186/1471-2164-15-760

    Article  PubMed Central  PubMed  Google Scholar 

  • Pushpavalli SNCVL, Sarkar A, Bag I, Hunt CR, Ramaiah MJ, Pandita TK, Bhadra U, Pal-Bhadra M (2014) Argonaute-1 functions as a mitotic regulator by controlling cyclin B during Drosophila early embryogenesis. FASEB J 28:655–666. doi:10.1096/fj.13-231167

    Article  CAS  PubMed  Google Scholar 

  • Radzicka A, Wolfenden R (1995) A proficient enzyme. Science 267:90–93

    Article  CAS  PubMed  Google Scholar 

  • Rainbow P, Black W (2001) Effects of changes in salinity on the apparent water permeability of three crab species: Carcinus maenas eriocheir sinensis and Necora puber. J Exp Mar Biol Ecol 264:1–13

    Article  Google Scholar 

  • Rao G, Sui J, Zeng Y, He C, Duan A, Zhang J (2014) De novo transcriptome and small RNA analysis of two Chinese willow cultivars reveals stress response genes in Salix matsudana. PLoS ONE 9:e109122. doi:10.1371/journal.pone.0109122

    Article  PubMed Central  PubMed  Google Scholar 

  • Reytor E, Pérez-Miguelsanz J, Alvarez L, Pérez-Sala D, Pajares MA (2009) Conformational signals in the C-terminal domain of methionine adenosyltransferase I/III determine its nucleocytoplasmic distribution. FASEB J 23:3347–3360

    Article  CAS  PubMed  Google Scholar 

  • Romano N, Zeng CS (2012) Osmoregulation in decapod crustaceans: implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture 334:12–23. doi:10.1016/j.aquaculture.2011.12.035

    Article  Google Scholar 

  • Schomburg I, Chang A, Placzek S, Söhngen C, Rother M, Lang M, Munaretto C, Ulas S, Stelzer M, Grote A (2013) BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res 41(D1):D764–D772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song Y-N, Shi L-L, Liu Z-Q, Qiu G-F (2014) Global analysis of the ovarian microRNA transcriptome: implication for miR-2 and miR-133 regulation of oocyte meiosis in the Chinese mitten crab, Eriocheir sinensis (Crustacea: Decapoda). BMC Genomics 15:547. doi:10.1186/1471-2164-15-547

    Article  PubMed Central  PubMed  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci 100:9440–9445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Surridge AK, Lopez-Gomollon S, Moxon S, Maroja LS, Rathjen T, Nadeau NJ, Dalmay T, Jiggins CD (2011) Characterisation and expression of microRNAs in developing wings of the neotropical butterfly Heliconius melpomene. BMC Genomics 12:62. doi:10.1186/1471-2164-12-62

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tine M, Mckenzie DJ, Bonhomme F, Durand J-D (2011) Salinity-related variation in gene expression in wild populations of the black-chinned tilapia from various west African coastal marine, estuarine and freshwater habitats. Estuar Coast Shelf Sci 91:102–109. doi:10.1016/j.ecss.2010.10.015

    Article  CAS  Google Scholar 

  • Valenzuela-Miranda D, Nunez-Acuna G, Valenzuela-Munoz V, Asgari S, Gallardo-Escarate C (2015) MicroRNA biogenesis pathway from the salmon louse (Caligus rogercresseyi): emerging role in delousing drug response. Gene 555:231–241. doi:10.1016/j.gene.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Yu Z, Wang F, Li W, Ye C, Li J, Tang J, Ding J, Zhao J, Wang B (2007) Cloning, characterization, and transformation of the phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) in maize (Zea mays L.). Mol Biotechnol 36:102–112. doi:10.1007/s12033-007-0009-1

    Article  CAS  PubMed  Google Scholar 

  • Xie F, Stewart CN Jr, Taki FA, He Q, Liu H, Zhang B (2014) High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress. Plant Biotechnol J 12:354–366. doi:10.1111/pbi.12142

    Article  CAS  PubMed  Google Scholar 

  • Xu QH, Liu Y (2011) Gene expression profiles of the swimming crab Portunus trituberculatus exposed to salinity stress. Mar Biol 158:2161–2172. doi:10.1007/s00227-011-1721-8

    Article  CAS  Google Scholar 

  • Yang H, Cho ME, Li TW, Peng H, Ko KS, Mato JM, Lu SC (2013) MicroRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma. J Clin Invest 123:285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu C, Song H, Yao G (2003) Geographical distribution and faunal analysis of crab resources in the East China Sea. J Zhejiang Ocean Univ 22:108–113

    Google Scholar 

  • Zeng D, Chen X, Xie D, Zhao Y, Yang Q, Wang H, Li Y, Chen X (2015) Identification of highly expressed host microRNAs that respond to white spot syndrome virus infection in the Pacific white shrimp Litopenaeus vannamei (Penaeidae). Genet Mol Res 14:4818

    Article  CAS  PubMed  Google Scholar 

  • Zheng Q, Wang X-J (2008) GOEAST: a web-based software toolkit for gene ontology enrichment analysis. Nucleic Acids Res 36:W358–W363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou L, Chen J, Li Z, Li X, Hu X, Huang Y, Zhao X, Liang C, Wang Y, Sun L (2010) Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27. 3 associate with clear cell renal cell carcinoma. PLoS ONE 5:e15224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Z, Wang LL, Song LS, Liu R, Zhang H, Huang MM, Chen H (2014) The identification and characteristics of immune-related MicroRNAs in haemocytes of oyster Crassostrea gigas. PLoS ONE 9:e88397. doi:10.1371/journal.pone.0088397

    Article  PubMed Central  PubMed  Google Scholar 

  • Zikos A, Seale AP, Lerner DT, Grau EG, Korsmeyer KE (2014) Effects of salinity on metabolic rate and branchial expression of genes involved in ion transport and metabolism in Mozambique tilapia (Oreochromis mossambicus). Comp Biochem Physiol Mol Int Physiol 178:121–131. doi:10.1016/j.cbpa.2014.08.016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National High Technology Research and Development Program of China (Project 2012AA10A409) and the National Natural Science Foundation of China (Grant No. 41576147 and 41306177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(XLSX 15 kb)

Table S2

(XLSX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Liu, P., Gao, B. et al. The identification and characteristics of salinity-related microRNAs in gills of Portunus trituberculatus . Cell Stress and Chaperones 21, 63–74 (2016). https://doi.org/10.1007/s12192-015-0641-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-015-0641-9

Keywords

Navigation