Skip to main content
Log in

Age-related thermal response: the cellular resilience of juveniles

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Understanding species’ responses to environmental challenges is key to predicting future biodiversity. However, there is currently little data on how developmental stages affect responses and also whether universal gene biomarkers to environmental stress can be identified both within and between species. Using the Antarctic clam, Laternula elliptica, as a model species, we examined both the tissue-specific and age-related (juvenile versus mature adult) gene expression response to acute non-lethal warming (12 h at 3 °C). In general, there was a relatively muted response to this sub-lethal thermal challenge when the expression profiles of treated animals, of either age, were compared with those of 0 °C controls, with none of the “classical” stress response genes up-regulated. The expression profiles were very variable between the tissues of all animals, irrespective of age with no single transcript emerging as a universal biomarker of thermal stress. However, when the expression profiles of treated animals of the different age groups were directly compared, a very different pattern emerged. The profiles of the younger animals showed significant up-regulation of chaperone and antioxidant transcripts when compared with those of the older animals. Thus, the younger animals showed evidence of a more robust cellular response to warming. These data substantiate previous physiological analyses showing a more resilient juvenile population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn I-Y (1994) Ecology of the Antarctic bivalve Laternula elliptica (King and Broderip) in Collins Harbour, King George Island: benthic environment and adaptive strategy. Mem Natl Inst Polar Res Spec Issue 50:1–10

    Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arntz WE, Brey T, Gallardo VA (1994) Antarctic zoobenthos. In: Ansell AD, Gibson RN, Barnes M, editors. Oceanography and Marine Biology, An Annual Review. 32: 241–304

  • Bairoch A, Bougueleret L, Altairac S, Amendolia V, Auchincloss A et al (2007) The universal protein resource (UniProt). Nucl Acids Res 35:D193–D197

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J Roy Stat Soc B 57:289–300

    Google Scholar 

  • Bertolotti A, Zhang YH, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–332

    Article  CAS  PubMed  Google Scholar 

  • Buckley BA, Gracey AY, Somero GN (2006) The cellular response to heat stress in the goby Gillichthys mirabilis: a cDNA microarray and protein-level analysis. J Exp Biol 209:2660–2677

    Article  CAS  PubMed  Google Scholar 

  • Clark MS, Peck LS (2009) Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna). Cell Stress Chaperones 14:649–660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clark MS, Fraser KPP, Peck LS (2008) Antarctic marine molluscs do have an HSP70 heat shock response. Cell Stress Chaperones 13:39–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clark MS, Thorne MAS, Vieira FA, Cardoso JCR, Power DM et al (2010) Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing. BMC Genomics 11:362

    Article  PubMed Central  PubMed  Google Scholar 

  • Clark MS, Husmann G, Thorne MAS, Burns G, Truebano M et al (2013) Hypoxia impacts large adults first: consequences in a warming world. Glob Chang Biol 19:2251–2263

    Article  PubMed  Google Scholar 

  • Cook LM, Freeman PM (1986) Heating properties of morphs of the mangrove snail Littoraria pallescens. Biol J Linn Soc 29:295–300

    Article  Google Scholar 

  • Dahlhoff E, Somero GN (1993) Effects of temperature on mitochondria from abalone (genus Haliotis): adaptive plasticity and its limits. J Exp Biol 185:151–168

    Google Scholar 

  • De Wolf H, Backeljau T, Verhagen R (1998) Spatio-temporal genetic structure and gene flow between two distinct shell morphs of the planktonic developing periwinkle Littorina striata (Mollusca: Prosobranchia). Mar Ecol Prog Ser 163:155–163

    Article  Google Scholar 

  • Dell RK (1972) Antarctic benthos. Adv Mar Biol 10:1–216

    Article  Google Scholar 

  • R Development Core Team (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org

  • Drinkwater K (2009) Comparison of the response of Atlantic cod (Gadus morhua) in the high-latitude regions of the North Atlantic during the warm periods of the 1920s–1960s and the 1990s–2000s. Deep-Sea Res II 56:2087–2096

    Article  Google Scholar 

  • Drummond IAS, McClure SA, Poenie M, Tsein RY, Steinhardt RA (1986) Large changes in intracellular pH and calcium observed during heat shock are not responsible for the induction of heat shock proteins in Drosophila melanogaster. Mol Cell Biol 6:1767–1775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fields PA, Zuzow MJ, Tomanek L (2012) Proteomic responses of blue mussel (Mytilus) congeners to temperature acclimation. J Exp Biol 215:1106–1116

    Article  CAS  PubMed  Google Scholar 

  • Gestal C, Pallavicini A, Venier P, Novoa B, Figueras A (2010) MgC1q, a novel C1q-domain-containing protein involved in the immune response of Mytilus galloprovincialis. Dev Comp Immunol 34:926–934

    Article  CAS  PubMed  Google Scholar 

  • Grange LJ, Tyler PA, Peck LS, Cornelius N (2004) Long-term interannual cycles of the gametogenic ecology of the Antarctic brittle star Ophionotus victoriae. Mar Ecol Prog Ser 278:141–155

    Article  Google Scholar 

  • Gunter HM, Degan BM (2008) Impact of ecologically relevant heat shocks in Hsp developmental function in the vetigastropod Haliotis asinina. J Exp Zool 310B:450–464

    Article  Google Scholar 

  • Husmann G, Philipp EER, Rosenstiel P, Vazquez S, Abele D (2011) Immune response of the Antarctic bivalve Laternula elliptica to physical stress and microbial exposure. J Exp Mar Biol Ecol 398:83–90

    Article  Google Scholar 

  • Husmann G, Abele D, Rosenstiel P, Clark MS, Kraemer L et al (2014) Age-dependent expression of stress and antimicrobial genes in the hemocytes and siphon tissue of the Antarctic bivalve, Laternula elliptica, exposed to injury and starvation. Cell Stress Chaperones 19:15–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kultz D (2005) Molecular and evolutionary basis of the cellular stress response. Ann Rev Physiol 67:225–257

    Article  Google Scholar 

  • Leadsham JE, Gourlay CW (2008) Cytoskeletal induced apoptosis in yeast. Biochim Biophys Acta, Mol Cell Res 1783:1406–1412

    Article  CAS  PubMed  Google Scholar 

  • Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B et al (2011) Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Ann Rev Physiol 73:479–501

    Article  CAS  Google Scholar 

  • Lockwood BL, Sanders JG, Somero GN (2010) Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. J Exp Biol 213:3548–3558

    Article  CAS  PubMed  Google Scholar 

  • Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic, London

    Google Scholar 

  • Morley SA, Peck LS, Miller AJ, Portner HO (2007) Hypoxia tolerance associated with activity reduction is a key adaptation for Laternula elliptica seasonal energetics. Oecologia 153:29–36

    Article  PubMed  Google Scholar 

  • Pantzartzi C, Drosopoulou E, Yiangou M, Drozdov I, Tsoka S et al (2010) Promoter complexity and tissue-specific expression of stress response components in Mytilus galloprovincialis, a sessile marine invertebrate species. PLoS Comp Biol 6, e1000847

    Article  Google Scholar 

  • Parkinson J, Anthony A, Wasmuth J, Schmid R, Hedley A et al (2004) PartiGene—constructing partial genomes. Bioinformatics 20:1398–1404

    Article  CAS  PubMed  Google Scholar 

  • Peck LS, Portner HO, Hardewig I (2002) Metabolic demand, oxygen supply, and critical temperatures in the Antarctic bivalve Laternula elliptica. Physiol Biochem Zool 75:123–133

    Article  PubMed  Google Scholar 

  • Peck LS, Webb KE, Bailey DM (2004) Extreme sensitivity of biological function to temperature in Antarctic marine species. Func Ecol 18:625–630

    Article  Google Scholar 

  • Peck LS, Morley SA, Portner HO, Clark MS (2007) Thermal limits of burrowing capacity are linked to oxygen availability and size in the Antarctic clam Laternula elliptica. Oecologia 154:479–484

    Article  PubMed  Google Scholar 

  • Peck LS, Clark MS, Morley SA, Massey A, Rossetti H (2009) Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Func Ecol 23:248–256

    Article  Google Scholar 

  • Peck LS, Souster T, Clark MS (2013) Juveniles are more resistant to warming than adults in 4 species of Antarctic marine invertebrates. PLoS One 8, e66033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pertea G, Huang XQ, Liang F, Antonescu V, Sultana R et al (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652

    Article  CAS  PubMed  Google Scholar 

  • Petalidis L, Bhattacharyya S, Morris GA, Collins VP, Freeman TC et al (2003) Global amplification of mRNA by template-switching PCR: linearity and application to microarray analysis. Nucl Acids Res 31, e142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Philipp EER, Husmann G, Abele D (2011) The impact of sediment deposition and iceberg scour on the Antarctic soft shell clam Laternula elliptica at King George Island. Antarct Antarct Sci 23:127–138

    Article  Google Scholar 

  • Purac J, Burns G, Thorne MAS, Grubor-Lajsic G, Worland MR et al (2008) Cold hardening processes in the Antarctic springtail, Cryptopygus antarcticus: clues from a microarray. J Insect Physiol 54:1356–1362

    Article  CAS  PubMed  Google Scholar 

  • Ralph R, Maxwell JGH (1977) Growth of 2 Antarctic Lamellibranchs—Adamussium colbecki and Laternula elliptica. Mar Biol 42:171–175

    Article  Google Scholar 

  • Richie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, Smyth GK (2007) A comparison of background correction methods for two colour microarrays. Bioinformatics 23:2700–2707

    Article  Google Scholar 

  • Schmidt-Nielsen K (1991) Animal physiology: adaptation and environment. Cambridge University Press, Cambridge

    Google Scholar 

  • Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Applic Genet Mol Biol 3:3

    Google Scholar 

  • Smyth GK (2005) Limma: linear models for microarray data. Gentalman R, Carey VJ, Huber W, Irizarry RA, Dudoit S, editors. 397–420 p

  • Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31:265–273

    Article  CAS  PubMed  Google Scholar 

  • Smyth GK, Michaud J, Scott HS (2005) Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21:2067–2075

    Article  CAS  PubMed  Google Scholar 

  • Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213:912–920

    Article  CAS  PubMed  Google Scholar 

  • Sørensen JG, Loeschcke V (2007) Studying stress responses in the post-genomic era: its ecological and evolutionary role. J Biosci 32:447–456

    Article  PubMed  Google Scholar 

  • Tomanek L (2011) Environmental proteomics: changes in the proteome of marine organisms in response to environmental stress, pollutants, infection, symbiosis, and development. Ann Rev Mar Sci 3:373–399

    Article  PubMed  Google Scholar 

  • Truebano M, Burns G, Thorne MAS, Hillyard G, Peck LS et al (2010) Transcriptional response to heat stress in the Antarctic bivalve Latemula elliptica. J Exp Mar Biol Ecol 391:65–72

    Article  CAS  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics. Springer, Berlin

    Book  Google Scholar 

  • Walker ST, Mantle D, Bythell JC, Thomason JC (2000) Oxidative-stress: comparison of species specific and tissue specific effects in the marine bivalves Mytilus edulis (L.) and Dosinia lupinus (L.). Comp Biochem Physiol B 127:347–355

    Article  CAS  PubMed  Google Scholar 

  • Waskiewicz AJ, Flynn A, Proud CG, Cooper JA (1997) Mitogen activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 16:1909–1920

  • Yu ZF, Luo H, Fu WM, Mattson MP (1999) The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol 155:302–314

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This paper was funded by NERC core funding to BAS within the Polar Sciences for Planet Earth Programme. We would like to thank the Rothera Dive Team for help in collecting animals. The NERC National Facility for Scientific Diving (Oban) provided overall diving support. We would also like to thank three anonymous reviewers for their very constructive comments and additional references, which have greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Clark.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(PPTX 216 kb)

Table S1

(DOCX 13 kb)

Table S2

(DOCX 13 kb)

Table S3

(DOCX 12 kb)

Table S4

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, M.S., Thorne, M.A.S., Burns, G. et al. Age-related thermal response: the cellular resilience of juveniles. Cell Stress and Chaperones 21, 75–85 (2016). https://doi.org/10.1007/s12192-015-0640-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-015-0640-x

Keywords

Navigation