Skip to main content
Log in

The role of small heat shock proteins in parasites

  • Mini Review
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The natural life cycle of many protozoan and helminth parasites involves exposure to several hostile environmental conditions. Under these circumstances, the parasites arouse a cellular stress response that involves the expression of heat shock proteins (HSPs). Small HSPs (sHSPs) constitute one of the main families of HSPs. The sHSPs are very divergent at the sequence level, but their secondary and tertiary structures are conserved and some of its members are related to α-crystallin from vertebrates. They are involved in a variety of cellular processes. As other HSPs, the sHSPs act as molecular chaperones; however, they have shown other activities apparently not related to chaperone action. In this review, the diverse activities of sHSPs in the major genera of protozoan and helminth parasites are described. These include stress response, development, and immune response, among others. In addition, an analysis comparing the sequences of sHSPs from some parasites using a distance analysis is presented. Because many parasites face hostile conditions through its life cycles the study of HSPs, including sHSPs, is fundamental.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Arizono N, Yamada M, Tegoshi T, Takaoka Y, Ohta M, Sakaeda T (2011) Hsp12.6 expression is inducible by host immunity in adult worms of the parasitic nematode Nippostrongylus brasiliensis. PLoS One 6, e18141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Basha E, Lee GJ, Demeler B, Vierling E (2004) Chaperone activity of cytosolic small heat shock proteins from wheat. Eur J Biochem 271:1426–1436

    Article  CAS  PubMed  Google Scholar 

  • Benitez L, Harrison LJS, Parkhouse RME, Gárate T (1998) Sequence and preliminary characterisation of a Taenia saginata oncosphere gene homologue of the small heat-shock protein family. Parasitol Res 84:423–425

    Article  CAS  PubMed  Google Scholar 

  • Bohne W, Gross U, Ferguson DJP, Heesemann J (1995) Cloning and characterization of a bradyzoite-specifically expressed gene (hsp30/bag1) of Toxoplasma gondii, related to genes encoding small heat-shock proteins of plants. Mol Microbiol 16:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Bohne W, Hunter CA, White MW, Ferguson DJP, Gross U, Roos DS (1998) Targeted disruption of the bradyzoite-specific gene BAG1 does not prevent tissue cyst formation in Toxoplasma gondii. Mol Biochem Parasitol 92:291–301

    Article  CAS  PubMed  Google Scholar 

  • Brown WC, Ruef BJ, Norimine J, Kegerreis KA, Suarez CE, Conley PG, Stich RW, Carson KH, Rice-Ficht AC (2001) A novel 20-kilodalton protein conserved in Babesia bovis and B. bigemina stimulates memory CD4+ T lymphocyte responses in B. bovis-immune cattle. Mol Biochem Parasitol 118:97–109

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Langley JG, Smith DI, Boros DL (1996) A cloned major Schistosoma mansoni egg antigen with homologies to small heat shock proteins elicits Th1 responsiveness. Infect Immun 64:1750–1755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campanini B, Vita-Finzi L (2004) The world health report 2004: changing history. WHO Press, World Health Organization, France

  • Cao M, Chao H, Doughty BL (1993) Cloning of a cDNA encoding an egg antigen homologue from Schistosoma mansoni. Mol Biochem Parasitol 58:169–172

    Article  CAS  PubMed  Google Scholar 

  • Crompton DWT (2010) Working to overcome the global impact of neglected tropical diseases: first WHO report on neglected tropical diseases. WHO Press, World Health Organization, France

  • de Jong WW, Caspers GJ, Leunissen JAM (1998) Genealogy of the alpha-crystallin-small heat-shock protein superfamily. Int J Biol Macromol 22:151–162

    Article  PubMed  Google Scholar 

  • de Miguel N, Echeverria PC, Angel SO (2005) Differential subcellular localization of members of the Toxoplasma gondii Small Heat Shock Protein Family. Eukaryot Cell 4:1990–1997

    Article  PubMed Central  PubMed  Google Scholar 

  • de Miguel N, Lebrun M, Heaslip A, Hu K, Beckers CJ, Matrajt M, Dubremetz JF, Angel SO (2008) Toxoplasma gondii Hsp20 is a stripe-arranged chaperone-like protein associated with the outer leaflet of the inner membrane complex. Biol Cell 100:479–489

    Article  PubMed Central  PubMed  Google Scholar 

  • de Miguel N, Braun N, Bepperling A, Kriehuber T, Kastenmüller A, Buchner J, Angel SO, Haslbeck M (2009) Structural and functional diversity in the family of small heat shock proteins from the parasite Toxoplasma gondii. Biochim Biophys Acta 1793:1738–1748

    Article  PubMed  Google Scholar 

  • Devaney E, Egan A, Lewis E, Warbrick EV, Jecock RM (1992) The expression of small heat shock proteins in the microfilaria of Brugia pahangi and their possible role in development. Mol Biochem Parasitol 56:209–218

    Article  CAS  PubMed  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  PubMed  Google Scholar 

  • Ferrer E, González LM, Foster-Cuevas M, Cortéz MM, Dávila I, Rodríguez M, Sciutto E, Harrison LJS, Parkhouse RME, Gárate T (2005) Taenia solium: characterization of a small heat shock protein (Tsol-sHSP35.6) and its possible relevance to the diagnosis and pathogenesis of neurocysticercosis. Exp Parasitol 110:1–11

    Article  CAS  PubMed  Google Scholar 

  • Folgueira C, Requena JM (2007) A postgenomic view of the heat shock proteins in kinetoplastids. FEMS Microbiol Rev 31:359–377

    Article  CAS  PubMed  Google Scholar 

  • Gnanasekar M, Anandharaman V, Anand SB, Nutman TB, Ramaswamy K (2008) A novel small heat shock protein 12.6 (HSP12.6) from Brugia malayi functions as a human IL-10 receptor binding protein. Mol Biochem Parasitol 159:98–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gorenflot A, Brasseur P, Precigout E, L’Hostis M, Marchand A, Schrevel J (1991) Cytological and immunological responses to Babesia divergens in different hosts: ox, gerbil, man. Parasitol Res 77:3–12

    Article  CAS  PubMed  Google Scholar 

  • Hartman D, Cottee PA, Savin KW, Bhave M, Presidente PJA, Fulton L, Walkiewicz M, Newton SE (2003) Haemonchus contortus: molecular characterization of a small heat shock protein. Exp Parasitol 104:96–103

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck M (2002) sHsps and their role in the chaperone network. Cell Mol Life Sci 59:1649–1657

    Article  CAS  PubMed  Google Scholar 

  • Hombach A, Ommen G, MacDonald A, Clos J (2014) A small heat shock protein is essential for thermotolerance and intracellular survival of Leishmania donovani. J Cell Sci 127:4762–4773

    Article  PubMed Central  PubMed  Google Scholar 

  • Ingolia TD, Craig EA (1982) Four small Drosophila heat shock proteins are related to each other and to mammalian α-crystallin. Proc Natl Acad Sci USA 79:2360–2364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jecock RM, Devaney E (1992) Expression of small heat shock proteins by the third stage larva of Brugia pahangi. Mol Biochem Parasitol 56:219–226

    Article  CAS  PubMed  Google Scholar 

  • Kappé G, Aquilina JA, Wunderink L, Kamps B, Robinson CV, Gárate T, Boelens WC, de Jong WW (2004) Tsp36, a tapeworm small heat-shock protein with a duplicated α-crystallin domain, forms dimers and tetramers with good chaperone-like activity. Proteins 57:109–117

    Article  PubMed  Google Scholar 

  • Kobayashi T, Narabu S, Yanai Y, Hatano Y, Ito A, Imai S, Ike K (2013) Gene cloning and characterization of the protein encoded by the Neospora caninum bradyzoite-specific antigen gene Bag1. J Parasitol 99:453–458

  • Kouguchi H, Matsumoto J, Katoh Y, Suzuki T, Oku Y, Yagi K (2010) Echinococcus multilocularis: two-dimensional western blotting method for the identification and expression analysis of immunogenic proteins in infected dogs. Exp Parasitol 124:238–243

    Article  CAS  PubMed  Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee S, Carson K, Rice-Ficht A, Good T (2005) Hsp20, a novel α-crystallin, prevents Aβ fibril formation and toxicity. Protein Sci 14:607–601

    Google Scholar 

  • Lee JS, Lee J, Kim SH, Yong TS (2007) Molecular cloning and characterization of a major egg antigen in Paragonimus westermani and its use in ELISA for the immunodiagnosis of paragonimiasis. Parasitol Res 100:677–681

    Article  PubMed  Google Scholar 

  • Liddell S, Parker C, Vinyard B, Jenkins M, Dubey JP (2003) Immunization of mice with plasmid DNA coding for NcGRA7 or NcsHSP33 confers partial protection against vertical transmission of Neospora caninum. J Parasitol 89:496–500

    Article  CAS  PubMed  Google Scholar 

  • Lillibridge CD, Rudin W, Philipp MT (1996) Dirofilaria immitis: ultrastructural localization, molecular characterization, and analysis of the expression of p27, a small heat shock protein homolog of nematodes. Exp Parasitol 83:30–45

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • MacRae TH (2000) Structure and function of small heat shock/alpha-crystallin proteins: established concepts and emerging ideas. Cell Mol Life Sci 57:899–913

    Article  CAS  PubMed  Google Scholar 

  • Maresca B, Carratù L (1992) The biology of the heat shock response in parasites. Parasitol Today 8:260–266

    Article  CAS  PubMed  Google Scholar 

  • Martínez I, Martínez-Ibarra A, Arce-Fonseca M, Rodríguez-Morales O, Pérez-Morales D, Reyes-López PA, Espinoza B (2014) Seroprevalence and major antigens recognized by sera from Trypanosoma cruzi-infected dogs from Jalisco, México. Rev Argent Microbiol 46:85–90

    PubMed  Google Scholar 

  • Mohamed RM, Aosai F, Chen M, Mun HS, Norose K, Belal US, Piao LX, Yano A (2003) Induction of protective immunity by DNA vaccination with Toxoplasma gondii HSP70, HSP30 and SAG1 genes. Vaccine 21:2852–2861

    Article  CAS  PubMed  Google Scholar 

  • Montagna GN, Buscaglia CA, Münter S, Goosmann C, Frischknecht F, Brinkmann V, Matuschewski K (2012) Critical role for heat shock protein 20 (HSP20) in migration of malarial sporozoites. J Biol Chem 287:2410–2422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Montalvo-Álvarez AM, Folgueira C, Carrión J, Monzote-Fidalgo L, Cañavate C, Requena JM (2008) The Leishmania HSP20 is antigenic during natural infections, but, as DNA vaccine, it does not protect BALB/c mice against experimental L. amazonensis infection. J Biomed Biotechnol 2008:695432

  • Montero E, Rodriguez M, Gonzalez LM, Lobo CA (2008) Babesia divergens: identification and characterization of BdHSP-20, a small heat shock protein. Exp Parasitol 119:238–245

    Article  CAS  PubMed  Google Scholar 

  • Mounier N, Arrigo AP (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7:167–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moxon JV, LaCourse EJ, Wright HA, Perally S, Prescott MC, Gillard JL, Barrett J, Hamilton JV, Brophy PM (2010) Proteomic analysis of embryonic Fasciola hepatica: characterization and antigenic potential of a developmentally regulated heat shock protein. Vet Parasitol 169:62–75

    Article  CAS  PubMed  Google Scholar 

  • Mun HS, Aosai F, Yano A (1999) Role of Toxoplasma gondii HSP70 and Toxoplasma gondii HSP30/bag1 in antibody formation and prophylactic immunity in mice experimentally infected with Toxoplasma gondii. Microbiol Immunol 43:471–479

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto H, Vígh L (2007) The small heat shock proteins and their clients. Cell Mol Life Sci 64:294–306

    Article  CAS  PubMed  Google Scholar 

  • Narberhaus F (2002) Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66:64–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nene V, Dunne DW, Johnson KS, Taylor DW, Cordingley JS (1986) Sequence and expression of a major egg antigen from Schistosoma mansoni. Homologies to heat shock proteins and alpha-crystallins. Mol Biochem Parasitol 21:179–188

    Article  CAS  PubMed  Google Scholar 

  • Nores MJ, Prucca CG, Quiroga R, Elías EV, Cavallín L, Price AM, Saura A, Carranza PG, Gottig N, Solari AJ, Lujan HD (2009) ORF-C4 from the early branching eukaryote Giardia lamblia displays characteristics of α-crystallin small heat-shock proteins. Biosci Rep 29:25–34

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Morales D, Ostoa-Saloma P, Espinoza B (2009) Trypanosoma cruzi SHSP16: characterization of an α-crystallin small heat shock protein. Exp Parasitol 123:182–189

    Article  PubMed  Google Scholar 

  • Plesofsky-Vig N, Vig J, Brambl R (1992) Phylogeny of the alpha-crystallin-related heat-shock proteins. J Mol Evol 35:537–545

    Article  CAS  PubMed  Google Scholar 

  • Précigout E, Valentin A, Carcy B, Gorenflot A, Nakamura K, Aikawa M, Schrével J (1993) Babesia divergens: characterization of a 17-kDa merozoite membrane protein. Exp Parasitol 77:425–434

    Article  PubMed  Google Scholar 

  • Raghavan N, Ghosh I, Eisinger WS, Pastrana D, Scott AL (1999) Developmentally regulated expression of a unique small heat shock protein in Brugia malayi. Mol Biochem Parasitol 104:233–246

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, MacRae TH (2005) Small heat shock proteins: molecular structure and chaperone function. Cell Mol Life Sci 62:2460–2476

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson FJ, Martin SAM, Devaney E (1996) Brugia pahangi: characterisation of a small heat shock protein cDNA clone. Exp Parasitol 83:259–266

    Article  CAS  PubMed  Google Scholar 

  • Tsvetkova NM, Horvath I, Torok Z, Wolkers WF, Balogi Z, Shigapova N, Crowe LM, Tablin F, Vierling E, Crowe JH, Vígh L (2002) Small heat-shock proteins regulate membrane lipid polymorphism. Proc Natl Acad Sci U S A 99:13504–13509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tweedie S, Grigg ME, Ingram L, Selkirk ME (1993) The expression of a small heat shock protein homologue is developmentally regulated in Nippostrongylus brasiliensis. Mol Biochem Parasitol 61:149–154

    Article  CAS  PubMed  Google Scholar 

  • Valentin A, Precigout E, L’Hostis M, Carcy B, Gorenflot A, Schrevel J (1993) Cellular and humoral immune responses induced in cattle by vaccination with Babesia divergens culture-derived exoantigens correlate with protection. Infect Immun 61:734–741

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Montfort RLM, Basha E, Friedrich KL, Slingsby C, Vierling E (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8:1025–1030

    Article  PubMed  Google Scholar 

  • Vercauteren I, De Maere V, Vercruysse J, Stevens M, Gevaert K, Claerebout E (2006) A small heat shock protein of Ostertagia ostertagi: stage-specific expression, heat inducibility, and protection trial. J Parasitol 92:1244–1250

    Article  CAS  PubMed  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    Article  CAS  Google Scholar 

  • Wu Z, Nagano I, Boonmars T, Takahashi Y (2007) Thermally induced and developmentally regulated expression of a small heat shock protein in Trichinella spiralis. Parasitol Res 101:201–212

    Article  CAS  PubMed  Google Scholar 

  • Younis AE, Geisinger F, Ajonina-Ekoti I, Soblik H, Steen H, Mitreva M, Erttmann KD, Perbandt M, Liebau E, Brattig NW (2011) Stage-specific excretory-secretory small heat shock proteins from the parasitic nematode Strongyloides ratti-putative links to host’s intestinal mucosal defense system. FEBS J 278:3319–3336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang YW, Kim K, Ma YF, Wittner M, Tanowitz HB, Weiss LM (1999) Disruption of the Toxoplasma gondii bradyzoite-specific gene BAG1 decreases in vivo cyst formation. Mol Microbiol 31:691–701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zilberstein D, Shapira M (1994) The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol 48:449–470

    Article  CAS  PubMed  Google Scholar 

  • Zügel U, Kaufmann SHE (1999) Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clin Microbiol Rev 12:19–39

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ricardo Paredes-León by his help to phylogenetic analysis; D. Pérez-Morales was a student of the PhD program: Doctorado en Ciencias Bioquímicas of Universidad Nacional Autónoma de México. She was a recipient of a PhD scholarship from CONACYT (130864). This work was partially supported by grant IN-206512 from DGAPA, UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertha Espinoza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Morales, D., Espinoza, B. The role of small heat shock proteins in parasites. Cell Stress and Chaperones 20, 767–780 (2015). https://doi.org/10.1007/s12192-015-0607-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-015-0607-y

Keywords

Navigation