Skip to main content
Log in

Isolation of arginine kinase from Apis cerana cerana and its possible involvement in response to adverse stress

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Arginine kinases (AK) in invertebrates play the same role as creatine kinases in vertebrates. Both proteins are important for energy metabolism, and previous studies on AK focused on this attribute. In this study, the arginine kinase gene was isolated from Apis cerana cerana and was named AccAK. A 5'-flanking region was also cloned and shown to contain abundant putative binding sites for transcription factors related to development and response to adverse stress. We imitated several abiotic and biotic stresses suffered by A. cerana cerana during their life, including heavy metals, pesticides, herbicides, heat, cold, oxidants, antioxidants, ecdysone, and Ascosphaera apis and then studied the expression patterns of AccAK after these treatments. AccAK was upregulated under all conditions, and, in some conditions, this response was very pronounced. Western blot and AccAK enzyme activity assays confirmed the results. In addition, a disc diffusion assay showed that overexpression of AccAK reduced the resistance of Escherichia coli cells to multiple adverse stresses. Taken together, our results indicated that AccAK may be involved of great significance in response to adverse abiotic and biotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Astrofsky KM, Roux MM, Klimpel KR, Fox JG, Dhar AK (2002) Isolation of differentially expressed genes from white spot virus (WSV) infected Pacific blue shrimp (Penaeus stylirostris). Arch Virol 147(9):1799–1812

    Article  CAS  PubMed  Google Scholar 

  • Awad EM, Osman OA (2002) Laminarin enhanced immunological disorders of septicimeric albino rats infected with Aeromonas hydrophila. Egypt J Immunol Egypt Assoc Immunol 10(2):49–56

    Google Scholar 

  • Bailey L (1967) The effect of temperature on the pathogenicity of the fungus Ascosphaera apis for larvae of the honeybee, Apis mellifera. Insect Pathology and Microbial Control. North Holland Publishing Co., Amsterdam, pp 162–167

    Google Scholar 

  • Brown AE, France RM, Grossman SH (2004) Purification and characterization of arginine kinase from the American cockroach (Periplaneta americana). Arch Insect Biochem Physiol 56(2):51–60

    Article  CAS  PubMed  Google Scholar 

  • Carlson CW, Fink SC, Brosemer RW (1971) Crystallization of glycerol 3-phosphate dehydrogenase, triosephosphate dehydrogenase, arginine kinase, and cytochrome c from a single extract of honeybees. Arch Biochem Biophys 144(1):107–114

    Article  CAS  PubMed  Google Scholar 

  • Casini AF, Ferrali M, Pompella A, Maellaro E, Comporti M (1986) Lipid peroxidation and cellular damage in extrahepatic tissues of bromobenzene-intoxicated mice. Am J Pathol 123(3):520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellington WR (1989) Phosphocreatine represents a thermodynamic and functional improvement over other muscle phosphagens. J Exp Biol 143(1):177–194

    CAS  PubMed  Google Scholar 

  • Ericsson A, Kotarsky K, Svensson M, Sigvardsson M, Agace W (2006) Functional characterization of the CCL25 promoter in small intestinal epithelial cells suggests a regulatory role for caudal-related homeobox (Cdx) transcription factors. J Immunol 176(6):3642–3651

    Article  CAS  PubMed  Google Scholar 

  • Fernandes M, Xiao H, Lis JT (1994) Fine structure analyses of the Drosophila and Saccharomyces heat shock factor-heat shock element interactions. Nucleic Acids Res 22(2):167–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujimoto N, Tanaka K, Suzuki T (2005) Amino acid residues 62 and 193 play the key role in regulating the synergism of substrate binding in oyster arginine kinase. FEBS Lett 579(7):1688–1692

    Article  CAS  PubMed  Google Scholar 

  • Goldshmit Y, Erlich S, Pinkas-Kramarski R (2001) Neuregulin rescues PC12-ErbB4 cells from cell death induced by H2O2 regulation of reactive oxygen species levels by phosphatidylinositol 3-kinase. J Biol Chem 276(49):46379–46385

    Article  CAS  PubMed  Google Scholar 

  • Holt SM, Kinsey ST (2002) Osmotic effects on arginine kinase function in living muscle of the blue crab Callinectes sapidus. J Exp Biol 205(12):1775–1785

    CAS  PubMed  Google Scholar 

  • Hsu T, Gogos JA, Kirsh SA, Kafatos FC (1992) Multiple zinc finger forms resulting from developmentally regulated alternative splicing of a transcription factor gene. Science 257(5078):1946–1950

    Article  CAS  PubMed  Google Scholar 

  • James JM, Collier GE (1992) Early gene interaction during prepupal expression of Drosophila arginine kinase. Dev Genet 13(4):302–305

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey PL, Capes-Davis A, Dunn JM, Tolhurst O, Seeto G, Hannan AJ, Lin SL (2000) CROC-4: a novel brain specific transcriptional activator of c-fos expressed from proliferation through to maturation of multiple neuronal cell types. Mol Cell Neurosci 16(3):185–196

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Sun R, Shi W, Yan Y, Li H, Guo X, Xu B (2014) Characterization of a mitochondrial manganese superoxide dismutase gene from Apis cerana cerana and its role in oxidative stress. J Insect Physiol 60:68–79

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Lamblin AFJ, Steller H, Thummel CS (2000) A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol Cell 5(3):445–455

    Article  CAS  PubMed  Google Scholar 

  • Johansson MW, Keyser P, Sritunyalucksana K, Söderhäll K (2000) Crustacean haemocytes and haematopoiesis. Aquaculture 191(1):45–52

    Article  CAS  Google Scholar 

  • Kammermeier H, Seymour AML (1993) Meaning of energetic parameters. Basic Res Cardiol 88(5):380–384

    Article  CAS  PubMed  Google Scholar 

  • Karim FD, Guild GM, Thummel CS (1993) The Drosophila broad-complex plays a key role in controlling ecdysone-regulated gene expression at the onset of metamorphosis. Development 118(3):977–988

    CAS  PubMed  Google Scholar 

  • Kinsey ST, Lee BC (2003) The effects of rapid salinity change on in vivo arginine kinase flux in the juvenile blue crab, Callinectes sapidus. Comp Biochem Physiol B Biochem Mol Biol 135(3):521–531

    Article  PubMed  Google Scholar 

  • Kucharski R, Maleszka R (1998) Arginine kinase is highly expressed in the compound eye of the honey-bee, Apis mellifera. Gene 211(2):343–349

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Oe T, Blair IA (2001) Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins. Science 292(5524):2083–2086

    Article  CAS  PubMed  Google Scholar 

  • Leung PS, Chu KH (2001) Current molecular immunological perspectives on seafood allergies. Recent Res Dev Allergy Clin Immunol 2:183195

  • Li M, Wang XY, Bai JG (2006) Purification and characterization of arginine kinase from locust. Protein Pept Lett 13(4):405–410

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li H, Zhang Z, Pan Y (2007) Identification of the proteome complement of high royal jelly producing bees (Apis mellifera) during worker larval development. Apidologie 38(6):545–557

    Article  CAS  Google Scholar 

  • Li X, Zhang X, Zhang J, Zhang X, Starkey SR, Zhu KY (2009) Identification and characterization of eleven glutathione S-transferase genes from the aquatic midge Chironomus tentans (Diptera: Chironomidae). Insect Biochem Mol Biol 39(10):745–754

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Xu P, Li Y, Shu H, Huang D (2007) Progress in ecdysone receptor (EcR) and insecticidal mechanisms of ecdysteroids. Acta Entomol Sin 50(1):67

    CAS  Google Scholar 

  • Liu J, Qu W, Kadiiska MB (2009a) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 238(3):209–214

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Xia L, Wu Y, Xia Q, Chen J, Roux KH (2009b) Identification and characterization of an arginine kinase as a major allergen from silkworm (Bombyx mori) larvae. Int Arch Allergy Immunol 150(1):8–14

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

  • Meng F, Zhang L, Kang M, Guo X, Xu B (2010) Molecular characterization, immunohistochemical localization and expression of a ribosomal protein L17 gene from Apis cerana cerana. Arch Insect Biochem Physiol 75(2):121–138

    Article  CAS  PubMed  Google Scholar 

  • Michelette EDF, Soares AEE (1993) Characterization of preimaginal developmental stages in Africanized honey bee workers, Apis mellifera. Apidologie 24(4):431–440

    Article  Google Scholar 

  • Miranda MR, Canepa GE, Bouvier LA, Pereira CA (2006) Trypanosoma cruzi: oxidative stress induces arginine kinase expression. Exp Parasitol 114(4):341–344

    Article  CAS  PubMed  Google Scholar 

  • Narendra M, Bhatracharyulu NC, Padmavathi P, Varadacharyulu NC (2007) Prallethrin induced biochemical changes in erythrocyte membrane and red cell osmotic haemolysis in human volunteers. Chemosphere 67(6):1065–1071

    Article  CAS  PubMed  Google Scholar 

  • Sauer U, Schlattner U (2004) Inverse metabolic engineering with phosphagen kinase systems improves the cellular energy state. Metab Eng 6(3):220–228

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Wiesner RJ, Grieshaber MK (1989) On the role of arginine kinase in insect flight muscle. Insect Biochem 19(5):471–480

    Article  CAS  Google Scholar 

  • Shekhar MS, Kiruthika J, Ponniah AG (2013) Identification and expression analysis of differentially expressed genes from shrimp (Penaeus monodon) in response to low salinity stress. Fish Shellfish Immunol 35(6):1957–1968

  • Silvestre F, Dierick JF, Dumont V, Dieu M, Raes M, Devos P (2006) Differential protein expression profiles in anterior gills of Eriocheir sinensis during acclimation to cadmium. Aquat Toxicol 76(1):46–58

    Article  CAS  PubMed  Google Scholar 

  • Song C, Cui Z, Liu Y, Li Q, Wang S (2012) Cloning and expression of arginine kinase from a swimming crab, Portunus trituberculatus. Mol Biol Rep 39(4):4879–4888

    Article  CAS  PubMed  Google Scholar 

  • Sookrung N, Chaicumpa W, Tungtrongchitr A, Vichyanond P, Bunnag C et al (2006) Periplaneta americana arginine kinase as a major cockroach allergen among Thai patients with major cockroach allergies. Environ Health Perspect 114(6):875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takeuchi M, Mizuta C, Uda K, Fujimoto N, Okamoto M, Suzuki T (2004) Unique evolution of Bivalvia arginine kinases. Cell Mol Life Sci CMLS 61(1):110–117

    Article  CAS  Google Scholar 

  • Uda K, Fujimoto N, Akiyama Y, Mizuta K, Tanaka K, Ellington WR, Suzuki T (2006) Evolution of the arginine kinase gene family. Comp Biochem Physiol D Genomics Proteomics 1(2):209–218

    Article  Google Scholar 

  • Vargas-Albores F, Yepiz-Plascencia G (2000) Beta glucan binding protein and its role in shrimp immune response. Aquaculture 191(1):13–21

    Article  CAS  Google Scholar 

  • von Kalm L, Crossgrove K, Von Seggern D, Guild GM, Beckendorf SK (1994) The broad-complex directly controls a tissue-specific response to the steroid hormone ecdysone at the onset of Drosophila metamorphosis. EMBO J 13(15):3505

    Google Scholar 

  • Wang HB, Xu YS (2006) cDNA cloning, genomic structure and expression of arginine kinase gene from Bombyx mori (L.). Sci Agric Sin 11:027

    CAS  Google Scholar 

  • Wang H, Zhang L, Zhang L et al (2009) Arginine kinase: differentiation of gene expression and protein activity in the red imported fire ant, Solenopsis invicta. Gene 430(1):38–43

    Article  CAS  PubMed  Google Scholar 

  • Wu QY, Li F, Zhu WJ, Wang XY (2007) Cloning, expression, purification, and characterization of arginine kinase from Locusta migratoria manilensis. Comp Biochem Physiol B Biochem Mol Biol 148(4):355–362

    Article  PubMed  Google Scholar 

  • Yan H, Jia H, Wang X, Gao H, Guo X, Xu B (2013) Identification and characterization of an Apis cerana cerana delta class glutathione S-transferase gene (AccGSTD) in response to thermal stress. Naturwissenschaften 100(2):153–163

    Article  CAS  PubMed  Google Scholar 

  • Yang G (2005) Harm of introducing the western honeybee Apis mellifera L. to the Chinese honeybee Apis cerana F. and its ecological impact. Acta Entomol Sin 48(3):401

    Google Scholar 

  • Yao CL, Wu CG, Xiang JH, Dong B (2005) Molecular cloning and response to laminarin stimulation of arginine kinase in haemolymph in Chinese shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol 19(4):317–329

    Article  CAS  PubMed  Google Scholar 

  • Yao P, Hao L, Wang F, Chen X, Yan Y, Guo X, Xu B (2013a) Molecular cloning, expression and antioxidant characterisation of a typical thioredoxin gene (AccTrx2) in Apis cerana cerana. Gene 527(1):33–41

    Article  CAS  PubMed  Google Scholar 

  • Yao P, Lu W, Meng F, Wang X, Xu B, Guo X (2013b) Molecular cloning, expression and oxidative stress response of a mitochondrial thioredoxin peroxidase gene (AccTpx-3) from Apis cerana cerana. J Insect Physiol 59(3):273–282

    Article  CAS  PubMed  Google Scholar 

  • Yao P, Chen X, Yan Y, Liu F, Zhang Y, Guo X, Xu B (2014) Glutaredoxin 1, glutaredoxin 2, thioredoxin 1 and thioredoxin peroxidase 3 play an important role in antioxidant defense in Apis cerana cerana. Free Radic Biol Med 68:335–346

    Article  CAS  PubMed  Google Scholar 

  • Yu CJ, Lin YF, Chiang BL, Chow LP (2003) Proteomics and immunological analysis of a novel shrimp allergen, Pen m 2. J Immunol 170(1):445–453

    Article  CAS  PubMed  Google Scholar 

  • Zhang YC, An SH, Li WZ, Guo XR, Luo MH, Yuan GH (2011) Cloning and mRNA expression analysis of arginine kinase gene from Helicoverpa assulta (Guenée) (Lepidoptera: Noctuidae). Acta Entomol Sin 54(7):754–761

    CAS  Google Scholar 

  • Zhang Y, Yan H, Lu W, Li Y, Guo X, Xu B (2013) A novel omega-class glutathione S-transferase gene in Apis cerana cerana: molecular characterisation of GSTO2 and its protective effects in oxidative stress. Cell Stress Chaperones 18(4):503–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Q, Wu C, Dong B, Li F, Liu F, Xiang J (2010) Proteomic analysis of acute responses to copper sulfate stress in larvae of the brine shrimp, Artemia sinica. Chin J Oceanol Limnol 28:224–232

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the earmarked fund for China Agriculture Research System (No.CARS-45), special fund for Agro-scientific Research in the Public Interest (No. 200903006), and the National Natural Science Foundation (No. 31172275) in China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingqi Guo or Baohua Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yao, P., Chu, X. et al. Isolation of arginine kinase from Apis cerana cerana and its possible involvement in response to adverse stress. Cell Stress and Chaperones 20, 169–183 (2015). https://doi.org/10.1007/s12192-014-0535-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-014-0535-2

Keywords

Navigation