Skip to main content
Log in

T cell recognition of naturally presented epitopes of self-heat shock protein 70

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Self-reactive T cells have shown to have a potential role as regulators of the immune system preventing or even suppressing autoimmunity. One of the most abundant proteins that can be eluted from human HLA molecules is heat shock protein 70 (HSP70). The aims of the current study are to identify HSP70 epitopes based on published HLA elution studies and to investigate whether T cells from healthy individuals may respond to such self-epitopes. A literature search and subsequent in silico binding prediction based on theoretical MHC binding motifs resulted in the identification of seven HSP70 epitopes. PBMCs of healthy controls proliferated after incubation with two of the seven peptides (H167 and H290). Furthermore H161, H290, and H443 induced CD69 expression or production of cytokines IFNγ or TNFα in healthy controls. The identification of these naturally presented epitopes and the response they elicit in the normal immune system make them potential candidates to study during inflammatory conditions as well as in autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abulafia-Lapid R, Gillis D, Yosef O, Atlan H, Cohen IR (2003) T cells and autoantibodies to human HSP70 in type 1 diabetes in children. J Autoimmun 20:313–321

    Article  CAS  PubMed  Google Scholar 

  • Alvarez I, Collado J, Daura X, Colome N, Rodriguez-Garcia M, Gallart T, Canals F, Jaraquemada D (2008) The rheumatoid arthritis-associated allele HLA-DR10 (DRB1*1001) shares part of its repertoire with HLA-DR1 (DRB1*0101) and HLA-DR4 (DRB*0401). Arthritis Rheum 58:1630–1639

    Article  CAS  PubMed  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    Article  CAS  PubMed  Google Scholar 

  • Bitmansour AD, Waldrop SL, Pitcher CJ, Khatamzas E, Kern F, Maino VC, Picker LJ (2001) Clonotypic structure of the human CD4+ memory T cell response to cytomegalovirus. J Immunol 167:1151–1163

    Article  CAS  PubMed  Google Scholar 

  • Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chicz RM, Urban RG, Gorga JC, Vignali DA, Lane WS, Strominger JL (1993) Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med 178:27–47

    Article  CAS  PubMed  Google Scholar 

  • Cohen IR (2007) Biomarkers, self-antigens and the immunological homunculus. J Autoimmun 29:246–249

    Article  CAS  PubMed  Google Scholar 

  • Crotzer VL, Blum JS (2009) Autophagy and its role in MHC-mediated antigen presentation. J Immunol 182:3335–3341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daugaard M, Rohde M, Jaattela M (2007) The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett 581:3702–3710

    Article  CAS  PubMed  Google Scholar 

  • de Jong H, Lafeber FF, de Jager W, Haverkamp MH, Kuis W, Bijlsma JW, Prakken BJ, Albani S (2009) PAN-DR-Binding Hsp60 self epitopes induce an interleukin-10-mediated immune response in rheumatoid arthritis. Arthritis Rheum 60:1966–1976

    Article  PubMed  Google Scholar 

  • Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Muller M, Kreymborg K, Altenberend F, Brandenburg J, Kalbacher H, Brock R, Driessen C, Rammensee HG, Stevanovic S (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci U S A 102:7922–7927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friede T, Gnau V, Jung G, Keilholz W, Stevanovic S, Rammensee HG (1996) Natural ligand motifs of closely related HLA-DR4 molecules predict features of rheumatoid arthritis associated peptides. Biochim Biophys Acta 1316:85–101

    Article  PubMed  Google Scholar 

  • Gastpar R, Gross C, Rossbacher L, Ellwart J, Riegger J, Multhoff G (2004) The cell surface-localized heat shock protein 70 epitope TKD induces migration and cytolytic activity selectively in human NK cells. J Immunol 172:972–980

    Article  CAS  PubMed  Google Scholar 

  • Halder T, Pawelec G, Kirkin AF, Zeuthen J, Meyer HE, Kun L, Kalbacher H (1997) Isolation of novel HLA-DR restricted potential tumor-associated antigens from the melanoma cell line FM3. Cancer Res 57:3238–3244

    CAS  PubMed  Google Scholar 

  • Hasler P (2006) Biological therapies directed against cells in autoimmune disease. Springer Semin Immunopathol 27:443–456

    Article  PubMed  Google Scholar 

  • Haug M, Dannecker L, Schepp CP, Kwok WW, Wernet D, Buckner JH, Kalbacher H, Dannecker GE, Holzer U (2005) The heat shock protein Hsp70 enhances antigen-specific proliferation of human CD4+ memory T cells. Eur J Immunol 35:3163–3172

    Article  CAS  PubMed  Google Scholar 

  • Huurman VA, van der Meide PE, Duinkerken G, Willemen S, Cohen IR, Elias D, Roep BO (2008) Immunological efficacy of heat shock protein 60 peptide DiaPep277 therapy in clinical type I diabetes. Clin Exp Immunol 152:488–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamphuis S, Kuis W, De Jager W, Teklenburg G, Massa M, Gordon G, Boerhof M, Rijkers GT, Uiterwaal CS, Otten HG, Sette A, Albani S, Prakken BJ (2005) Tolerogenic immune responses to novel T-cell epitopes from heat-shock protein 60 in juvenile idiopathic arthritis. Lancet 366:50–56

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koffeman EC, Genovese M, Amox D, Keogh E, Santana E, Matteson EL, Kavanaugh A, Molitor JA, Schiff MH, Posever JO, Bathon JM, Kivitz AJ, Samodal R, Belardi F, Dennehey C, van den Broek T, van Wijk F, Zhang X, Zieseniss P, Le T, Prakken BA, Cutter GC, Albani S (2009) Epitope-specific immunotherapy of rheumatoid arthritis: clinical responsiveness occurs with immune deviation and relies on the expression of a cluster of molecules associated with T cell tolerance in a double-blind, placebo-controlled, pilot phase II trial. Arthritis Rheum 60:3207–3216

    Article  CAS  PubMed  Google Scholar 

  • Kronenberg M, Rudensky A (2005) Regulation of immunity by self-reactive T cells. Nature 435:598–604

    Article  CAS  PubMed  Google Scholar 

  • Lehmann PV, Forsthuber T, Miller A, Sercarz EE (1992) Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358:155–157

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lippolis JD, White FM, Marto JA, Luckey CJ, Bullock TN, Shabanowitz J, Hunt DF, Engelhard VH (2002) Analysis of MHC class II antigen processing by quantitation of peptides that constitute nested sets. J Immunol 169:5089–5097

    Article  PubMed  Google Scholar 

  • Minota S, Cameron B, Welch WJ, Winfield JB (1988) Autoantibodies to the constitutive 73-kD member of the hsp70 family of heat shock proteins in systemic lupus erythematosus. J Exp Med 168:1475–1480

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Multhoff G, Pfister K, Gehrmann M, Hantschel M, Gross C, Hafner M, Hiddemann W (2001) A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones 6:337–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muntasell A, Carrascal M, Alvarez I, Serradell L, van Veelen P, Verreck FA, Koning F, Abian J, Jaraquemada D (2004) Dissection of the HLA-DR4 peptide repertoire in endocrine epithelial cells: strong influence of invariant chain and HLA-DM expression on the nature of ligands. J Immunol 173:1085–1093

    Article  CAS  PubMed  Google Scholar 

  • Mycko MP, Cwiklinska H, Szymanski J, Szymanska B, Kudla G, Kilianek L, Odyniec A, Brosnan CF, Selmaj KW (2004) Inducible heat shock protein 70 promotes myelin autoantigen presentation by the HLA class II. J Immunol 172:202–213

    Article  CAS  PubMed  Google Scholar 

  • Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L (2008) Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455:396–400

    Article  CAS  PubMed  Google Scholar 

  • Newcomb JR, Cresswell P (1993) Characterization of endogenous peptides bound to purified HLA-DR molecules and their absence from invariant chain-associated alpha beta dimers. J Immunol 150:499–507

    CAS  PubMed  Google Scholar 

  • Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Munz C (2005) Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307:593–596

    Article  CAS  PubMed  Google Scholar 

  • Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362:469–476

    Article  CAS  PubMed  Google Scholar 

  • Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79

    Article  CAS  PubMed  Google Scholar 

  • Prakken BJ, Samodal R, Le TD, Giannoni F, Yung GP, Scavulli J, Amox D, Roord S, de Kleer I, Bonnin D, Lanza P, Berry C, Massa M, Billetta R, Albani S (2004) Epitope-specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis. Proc Natl Acad Sci U S A 101:4228–4233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raz I, Elias D, Avron A, Tamir M, Metzger M, Cohen IR (2001) Beta-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. Lancet 358:1749–1753

    Article  CAS  PubMed  Google Scholar 

  • Salvetti M, Ristori G, Buttinelli C, Fiori P, Falcone M, Britton W, Adams E, Paone G, Grasso MG, Pozzilli C (1996) The immune response to mycobacterial 70-kDa heat shock proteins frequently involves autoreactive T cells and is quantitatively disregulated in multiple sclerosis. J Neuroimmunol 65:143–153

    Article  CAS  PubMed  Google Scholar 

  • Sanjeevi CB, Lybrand TP, Stevanovic S, Rammensee HG (2002) Molecular modeling of eluted peptides from DQ6 molecules (DQB1*0602 and DQB1*0604) negatively and positively associated with type 1 diabetes. Ann N Y Acad Sci 958:317–320

    Article  CAS  PubMed  Google Scholar 

  • Sargent CA, Dunham I, Trowsdale J, Campbell RD (1989) Human major histocompatibility complex contains genes for the major heat shock protein HSP70. Proc Natl Acad Sci U S A 86:1968–1972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh-Jasuja H, Toes RE, Spee P, Munz C, Hilf N, Schoenberger SP, Ricciardi-Castagnoli P, Neefjes J, Rammensee HG, Arnold-Schild D, Schild H (2000) Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med 191:1965–1974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Southwood S, Sidney J, Kondo A, del Guercio MF, Appella E, Hoffman S, Kubo RT, Chesnut RW, Grey HM, Sette A (1998) Several common HLA-DR types share largely overlapping peptide binding repertoires. J Immunol 160:3363–3373

    CAS  PubMed  Google Scholar 

  • Stepniak D, Wiesner M, de Ru AH, Moustakas AK, Drijfhout JW, Papadopoulos GK, van Veelen PA, Koning F (2008) Large-scale characterization of natural ligands explains the unique gluten-binding properties of HLA-DQ2. J Immunol 180:3268–3278

    Article  CAS  PubMed  Google Scholar 

  • Suri A, Walters JJ, Gross ML, Unanue ER (2005) Natural peptides selected by diabetogenic DQ8 and murine I-A(g7) molecules show common sequence specificity. J Clin Invest 115:2268–2276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka S, Kimura Y, Mitani A, Yamamoto G, Nishimura H, Spallek R, Singh M, Noguchi T, Yoshikai Y (1999) Activation of T cells recognizing an epitope of heat-shock protein 70 can protect against rat adjuvant arthritis. J Immunol 163:5560–5565

    CAS  PubMed  Google Scholar 

  • Tobian AA, Canaday DH, Harding CV (2004) Bacterial heat shock proteins enhance class II MHC antigen processing and presentation of chaperoned peptides to CD4+ T cells. J Immunol 173:5130–5137

    Article  CAS  PubMed  Google Scholar 

  • Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391–1396

    Article  CAS  PubMed  Google Scholar 

  • Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P, Kirschning CJ, Da CC, Rammensee HG, Wagner H, Schild H (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 277:20847–20853

    Article  CAS  PubMed  Google Scholar 

  • van Eden W, van der Zee R, Prakken B (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5:318–330

    Article  PubMed  Google Scholar 

  • van Eden W, Wick G, Albani S, Cohen I (2007) Stress, heat shock proteins, and autoimmunity: how immune responses to heat shock proteins are to be used for the control of chronic inflammatory diseases. Ann N Y Acad Sci 1113:217–237

    Article  PubMed  Google Scholar 

  • van Herwijnen MJ, Wieten L, van der ZR, van Kooten PJ, Wagenaar-Hilbers JP, Hoek A, den Braber I, Anderton SM, Singh M, Meiring HD, van Els CA, Van EW, Broere F (2012) Regulatory T cells that recognize a ubiquitous stress-inducible self-antigen are long-lived suppressors of autoimmune arthritis. Proc Natl Acad Sci U S A.

  • van Wijk F, Prakken B (2010) Heat shock proteins: Darwinistic immune modulation on dangerous grounds. J Leukoc Biol 88:431–434

    Article  PubMed  Google Scholar 

  • Verreck FA, van de Poel A, Drijfhout JW, Amons R, Coligan JE, Konig F (1996) Natural peptides isolated from Gly86/Val86-containing variants of HLA-DR1, -DR11, -DR13, and -DR52. Immunogenetics 43:392–397

    Article  CAS  PubMed  Google Scholar 

  • Wendling U, Paul L, van der Zee R, Prakken B, Singh M, van Eden W (2000) A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. J Immunol 164:2711–2717

    Article  CAS  PubMed  Google Scholar 

  • Wieten L, Berlo SE, Ten Brink CB, van Kooten PJ, Singh M, van der Zee R, Glant TT, Broere F, van Eden W (2009) IL-10 is critically involved in mycobacterial HSP70 induced suppression of proteoglycan-induced arthritis. PLoS One 4:e4186

    Article  PubMed Central  PubMed  Google Scholar 

  • Wieten L, van der Zee R, Spiering R, Wagenaar-Hilbers J, van Kooten P, Broere F, van Eden W (2010) A novel heat-shock protein coinducer boosts stress protein Hsp70 to activate T cell regulation of inflammation in autoimmune arthritis. Arthritis Rheum 62:1026–1035

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Aichinger M, Nedjic J, Klein L (2013) Thymic epithelial cells use macroautophagy to turn their inside out for CD4 T cell tolerance. Autophagy 9:931–932

    Article  CAS  PubMed  Google Scholar 

  • Zee van der R, Anderton SM, Buskens C, Alonso de Valasco E, Eden van W (1995) Heat shock protein T cell epitopes as immunogenic carriers in subunit vaccines. H L S Maya (Ed ), Peptides 1994 Proceedings of the Twenty-Third European Peptide Symposium, ESCOM Leiden:841–842.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva C. Koffeman.

Additional information

Huib de Jong and Eva C. Koffeman contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure A

Proliferation of donor PBMCs in response to the HSP70 peptides in relation to the HLA DR1 positivity and to the HLA DR4 positivity. Each dot represents an individual donor; means are shown per column. No differences could be found (Mann-Whitney test, all p values >0,05). (GIF 28 kb)

High-resolution image

(EPS 153 kb)

Supplemental Figure B

Expression of the combination of CD25 and FOXP3 and expression of LAP (TGF marker) by CD4+ T cells from short term T cells line restimulated with HSP70 peptides. Data are presented as percentage of CD3+ CD4+ cells positive for the staining, with the background (unstimulated condition) subtracted. Each dot represents an individual donor, mean is shown per column. (GIF 18 kb)

High-resolution image

(EPS 65 kb)

Supplemental Figure C

Percentage of CD45RO positive cells within the population of CD69 or cytokine positive CD4+ T cells. Each dot represents an individual donor, mean is shown per column. (GIF 31 kb)

High-resolution image

(EPS 93 kb)

Supplemental Figure D

Dot plots of two samples from donors with clear cytokine response by T cells, showing % CD45RO positivity within the population of CD69 or cytokine positive CD4+ T cells. (JPEG 41 kb)

High-resolution image

(TIFF 82 kb)

Supplemental Figure E

CD4 and CD8 staining of CD3+ cells from short term T cell lines restimulated with HSP70 peptides, showing the expression of CD69 and production of IFN and TNF in the two T cell subsets. Data are presented as percentage of CD3+ CD4+/CD8+ cells positive for the staining, with the background (unstimulated condition) subtracted. Each dot represents an individual donor, mean is shown per column. (GIF 31 kb)

High-resolution image

(EPS 147 kb)

Supplemental Figure F

Production of IFN by CD3− CD56+ cells from the short term culture restimulated with HSP70 peptides. Data are presented as percentage of CD3− CD56+ cells positive for the staining, with the background (unstimulated condition) subtracted. Each dot represents an individual donor, mean is shown per column. (GIF 5 kb)

High-resolution image

(EPS 58 kb)

Supplemental Figure G

Expression of CD69 and production of IFN, IL-10 and TNF by CD3+CD4+ T cells from short term T cells line restimulated with HSP70 peptides. Data are presented as Geo Mean of the positive cells. Each dot represents an individual donor, mean is shown per column. (GIF 13 kb)

High-resolution image

(EPS 90 kb)

ESM 8

(PDF 353 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jong, H., Koffeman, E.C., Meerding, J.M. et al. T cell recognition of naturally presented epitopes of self-heat shock protein 70. Cell Stress and Chaperones 19, 569–578 (2014). https://doi.org/10.1007/s12192-013-0484-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-013-0484-1

Keywords

Navigation