Skip to main content
Log in

Isolated hearts treated with skeletal muscle homogenates exhibit altered function

  • Short Communication
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Skeletal muscle fiber damage and necrosis can result in the release of intracellular molecules into the extracellular environment. These molecules, termed damage-associated molecular patterns (DAMPs), can act as signals capable of initiating immune and/or inflammatory responses through interactions with pattern recognition receptors. To investigate whether skeletal muscle DAMPs interact with the heart and alter cardiac function, isolated rat hearts were perfused for 75 min with buffer containing 1 μg/ml of either soleus (slow), white gastrocnemius (WG, fast), or heat-stressed white gastrocnemius (HSWG) skeletal muscle homogenates. Left ventricular developed pressure (LVDP) and rates of pressure increase/decrease (±dP/dt) were measured using the Langendorff technique. Compared to controls, no changes in LVDP or +dP/dt were observed over the 75-min perfusion when homogenates from the WG muscles were added. In contrast, at 30 min and thereafter, a decreased LVDP and +dP/dt was observed in the hearts treated with soleus muscle homogenates. The hearts treated with HSWG homogenates also showed a decrease in LVDP from 45 min until the end of perfusion. These results suggest that molecules present in slow muscle and heat-stressed muscle are capable of altering cardiac function. Thus, muscle fiber type and/or heat shock protein content of skeletal muscles may be factors that influence cardiac function following skeletal muscle damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Asea A (2008) Heat shock proteins and Toll-like receptors. In: Toll-like receptors (TLRs) and innate immunity. Springer, Berlin, pp 111–127

  • Asea A, Kraeft SK, Kurt-Jones EA et al (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    Article  PubMed  CAS  Google Scholar 

  • Benjamin IJ, McMillan DR (1998) Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 83:117–132

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Wu Y, Zhang Y et al (2006) Hsp70 inhibits lipopolysaccharide-induced NF-kappaB activation by interacting with TRAF6 and inhibiting its ubiquitination. FEBS Lett 580:3145–3152

    Article  PubMed  CAS  Google Scholar 

  • Douglas PS, O’Toole ML, Hiller WD et al (1987) Cardiac fatigue after prolonged exercise. Circulation 76:1206–1213

    Article  PubMed  CAS  Google Scholar 

  • Draisma A, Bemelmans R, van der Hoeven JG et al (2009) Microcirculation and vascular reactivity during endotoxemia and endotoxin tolerance in humans. Shock 31:581–585

    Article  PubMed  Google Scholar 

  • Febbraio MA, Ott P, Nielsen HB et al (2002) Exercise induces hepatosplanchnic release of heat shock protein 72 in humans. J Physiol 544:957–962

    Article  PubMed  CAS  Google Scholar 

  • Fehrenbach E, Niess AM, Voelker K et al (2005) Exercise intensity and duration affect blood soluble HSP72. Int J Sports Med 26:552–557

    Article  PubMed  CAS  Google Scholar 

  • Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74:49–94

    Article  PubMed  CAS  Google Scholar 

  • Frier BC, Noble EG, Locke M (2008) Diabetes-induced atrophy is associated with a muscle-specific alteration in NF-kappaB activation and expression. Cell Stress Chaperones 13:287–296

    Article  PubMed  CAS  Google Scholar 

  • Halliwill JR (2001) Mechanisms and clinical implications of post-exercise hypotension in humans. Exerc Sport Sci Rev 29:65–70

    Article  PubMed  CAS  Google Scholar 

  • Hingorani AD, Cross J, Kharbanda RK et al (2000) Acute systemic inflammation impairs endothelium-dependent dilatation in humans. Circulation 102:994–999

    Article  PubMed  CAS  Google Scholar 

  • Kim S-C, Stice JP, Chen L et al (2009) Extracellular heat shock protein 60, cardiac myocytes, and apoptosis. Circ Res 105:1186–1195

    Article  PubMed  CAS  Google Scholar 

  • Komulainen J, Vihko V (1994) Exercise-induced necrotic muscle damage and enzyme release in the four days following prolonged submaximal running in rats. Pflugers Arch - Eur J Physiol 428:346–351

    Article  CAS  Google Scholar 

  • La Gerche A, Connelly KA, Mooney DJ et al (2008) Biochemical and functional abnormalities of left and right ventricular function after ultra-endurance exercise. Heart 94:860–866

    Article  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Latchman DS (2001) Heat shock proteins and cardiac protection. Cardiovasc Res 51:637–646

    Article  PubMed  CAS  Google Scholar 

  • Lieber RL, Fridén J (1999) Mechanisms of muscle injury after eccentric contraction. J Sci Med Sport 2:253–265

    Article  PubMed  CAS  Google Scholar 

  • Locke M (2000) Heat shock transcription factor activation and Hsp72 accumulation in aged skeletal muscle. Cell Stress Chaperones 5:45–51

    Article  PubMed  CAS  Google Scholar 

  • Locke M, Noble EG, Atkinson BG (1991) Inducible isoform of HSP70 is constitutively expressed in a muscle fiber type specific pattern. Am J Physiol 261:C774–C779

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • MacDonald JR, MacDougall JD, Hogben CD (2000) The effects of exercise duration on post-exercise hypotension. J Hum Hypertens 14:125–129

    Article  PubMed  CAS  Google Scholar 

  • Manson J, Thiemermann C, Brohi K (2012) Trauma alarmins as activators of damage-induced inflammation. Br J Surg 99(Suppl 1):12–20

    Article  PubMed  CAS  Google Scholar 

  • Mathur S, Walley KR, Wang Y et al (2011) Extracellular heat shock protein 70 induces cardiomyocyte inflammation and contractile dysfunction via TLR2. Circ J 75:2445–2452

    Article  PubMed  CAS  Google Scholar 

  • Middleton N, Shave R, George K et al (2006) Left ventricular function immediately following prolonged exercise: a meta-analysis. Med Sci Sports Exerc 38:681–687

    Article  PubMed  Google Scholar 

  • Neilan TG, Yoerger DM, Douglas PS et al (2006) Persistent and reversible cardiac dysfunction among amateur marathon runners. Eur Hear J 27:1079–1084

    Article  Google Scholar 

  • Neufer PD, Ordway GA, Hand GA et al (1996) Continuous contractile activity induces fiber type specific expression of HSP70 in skeletal muscle. Am J Physiol 271:C1828–C1837

    PubMed  CAS  Google Scholar 

  • Rubartelli A, Lotze MT (2007) Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol 28:429–436

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521

    Article  PubMed  CAS  Google Scholar 

  • Staron RS, Hikida RS, Hagerman FC et al (1984) Human skeletal muscle fiber type adaptability to various workloads. J Histochem Cytochem 32:146–152

    Article  PubMed  CAS  Google Scholar 

  • Steensberg A, van Hall G, Osada T et al (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529(Pt 1):237–242

    Article  PubMed  CAS  Google Scholar 

  • Steensberg A, Keller C, Starkie RL et al (2002) IL-6 and TNF-alpha expression in, and release from, contracting human skeletal muscle. Am J Physiol Endocrinol Metab 283:E1272–E1278

    PubMed  CAS  Google Scholar 

  • Stoecklein VM, Osuka A, Lederer JA (2012) Trauma equals danger—damage control by the immune system. J Leukoc Biol 92:539–551

    Article  PubMed  CAS  Google Scholar 

  • Tiidus PD (2008) Skeletal muscle damage and repair. Human Kinetics, Champaign

    Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350

    Article  PubMed  CAS  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, Ghose S et al (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112

    Article  PubMed  CAS  Google Scholar 

  • Walsh RC, Koukoulas I, Garnham A et al (2001) Exercise increases serum Hsp72 in humans. Cell Stress Chaperones 6:386–393

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Raoof M, Chen Y et al (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107

    Article  PubMed  CAS  Google Scholar 

  • Zou N, Ao L, Cleveland JC et al (2008) Critical role of extracellular heat shock cognate protein 70 in the myocardial inflammatory response and cardiac dysfunction after global ischemia-reperfusion. Am J Physiol Heart Circ Physiol 294:H2805–H2813

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Locke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Battista, A.P., Locke, M. Isolated hearts treated with skeletal muscle homogenates exhibit altered function. Cell Stress and Chaperones 18, 675–681 (2013). https://doi.org/10.1007/s12192-013-0418-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-013-0418-y

Keywords

Navigation