Skip to main content
Log in

Euclidean space output controllability of singularly perturbed systems with small state delays

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A singularly perturbed linear time-dependent controlled system with multiple pointwise and distributed delays in the state variables is considered. The state delays are small of order of the small positive multiplier for a part of the derivatives in the system, which is a parameter of the singular perturbation. Along with the dynamic system, a linear algebraic delay-free output equation is considered. Two much simpler parameter-free subsystems (the slow and fast ones) are associated with the original system. It is established that proper kinds of controllability of the slow and fast subsystems yield the Euclidean space output controllability of the original system robust with respect to the parameter of singular perturbation for all its sufficiently small values. Illustrative examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bellman, R.: Introduction to Matrix Analysis. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  2. Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and Control of Infinite Dimensional Systems. Birkhuser, Boston (2007)

    Book  MATH  Google Scholar 

  3. Curtain, R.F., Zwart, H.: An Introduction to Infinite-Dimensional Linear Systems Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  4. Delfour, M.C., Mitter, S.K.: Controllability, observability and optimal feedback control of affine hereditary differential systems. SIAM J. Control 10, 298–328 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. Delfour, M.C., McCalla, C., Mitter, S.K.: Stability and the infinite-time quadratic cost problem for linear hereditary differential systems. SIAM J. Control 13, 48–88 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dmitriev, M.G., Kurina, G.A.: Singular perturbations in control problems. Autom. Remote Control 67, 1–43 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fridman, E.: Robust sampled-data \(H_{\infty }\) control of linear singularly perturbed systems. IEEE Trans. Autom. Control 51, 470–475 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gabasov, R., Kirillova, F.M., Krakhotko, V.V.: Controllability of multiloop systems with lumped parameters. Autom. Remote Control 32, 1710–1717 (1971)

    MathSciNet  MATH  Google Scholar 

  9. Gajic, Z., Lim, M.T.: Optimal Control of Singularly Perturbed Linear Systems and Applications. High Accuracy Techniques. Marsel Dekker Inc, New York (2001)

    Book  MATH  Google Scholar 

  10. Glizer, V.Y.: Optimal planar interception with fixed end conditions: a closed form solution. J. Optim. Theory Appl. 88, 503–539 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Glizer, V.Y.: Optimal planar interception with fixed end conditions: approximate solutions. J. Optim. Theory Appl. 93, 1–25 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Glizer, V.Y.: Euclidean space controllability of singularly perturbed linear systems with state delay. Systems Control Lett. 43, 181–191 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Glizer, V.Y.: Controllability of singularly perturbed linear time-dependent systems with small state delay. Dynam. Control 11, 261–281 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Glizer, V.Y.: Controllability of nonstandard singularly perturbed systems with small state delay. IEEE Trans. Automat. Control 48, 1280–1285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Glizer, V.Y.: Novel controllability conditions for a class of singularly perturbed systems with small state delays. J. Optim. Theory Appl. 137, 135–156 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Glizer, V.Y.: \(L^2\)-stabilizability conditions for a class of nonstandard singularly perturbed functional-differential systems. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 16, 181–213 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Glizer, V.Y.: Controllability conditions of linear singularly perturbed systems with small state and input delays. Math. Control Signals Syst. 28(1), 1–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Glizer, V.Y., Shinar, J.: Optimal evasion from a pursuer with delayed information. J. Optim. Theory Appl. 111, 7–38 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Glizer, V.Y., Turetsky, V.: A linear differential game with bounded controls and two information delays. Optimal Control Appl. Methods 30, 135–161 (2009)

    Article  MathSciNet  Google Scholar 

  20. Glizer, V.Y., Turetsky, V.: Robust Controllability of Linear Systems. Nova Science Publishers Inc, New York (2012)

    MATH  Google Scholar 

  21. Glizer, V.Y., Turetsky, V., Fridman, L., Shinar, J.: History-dependent modified sliding mode interception strategies with maximal capture zone. J. Franklin Inst. 349, 638–657 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Glizer, V.Y., Turetsky, V., Shinar, J.: Differential game with linear dynamics and multiple information delays. In: Proceedings of 13th WSEAS International Conference on Systems, pp. 179–184, Rodos, Greece (2009)

  23. Halanay, A.: Differential Equations: Stability, Oscillations. Time Lags. Academic Press, New York (1966)

    MATH  Google Scholar 

  24. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

  25. Isaacs, R.: Differential Games. Wiley, New York (1967)

    MATH  Google Scholar 

  26. Kaczorek, T.: Linear Control Systems. Research Studies Press, New York (1993)

    MATH  Google Scholar 

  27. Kalman, R.E.: Contributions to the theory of optimal control. Bol. Soc. Mat. Mex. 5, 102–119 (1960)

    MathSciNet  MATH  Google Scholar 

  28. Klamka, J.: Controllability of Dynamical Systems. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  29. Klamka, J.: Controllability of dynamical systems. A survey. Bull. Pol. Acad. Sci. Tech. 61, 335–342 (2013)

    Google Scholar 

  30. Kokotovic, P.V., Haddad, A.H.: Controllability and time-optimal control of systems with slow and fast modes. IEEE Trans. Automat. Control 20, 111–113 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kokotovic, P.V., Khalil, H.K., O’Reilly, J.: Singular Perturbation Methods in Control: Analysis and Design. Academic Press, London (1986)

    MATH  Google Scholar 

  32. Kopeikina, T.B.: Controllability of singularly perturbed linear systems with time-lag. Differ. Equ. 25, 1055–1064 (1989)

    Google Scholar 

  33. Kopeikina, T.B.: Unified method of investigating controllability and observability problems of time-variable differential systems. Funct. Differ. Equ. 13, 463–481 (2006)

    MathSciNet  Google Scholar 

  34. Kuehn, C.: Multiple Time Scale Dynamics. Springer, New York (2015)

    Book  MATH  Google Scholar 

  35. Kurina, G.A.: Complete controllability of singularly perturbed systems with slow and fast modes. Math. Notes 52, 1029–1033 (1992)

    Article  MathSciNet  Google Scholar 

  36. Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for differential-difference equations. Part V: small shifts with layer behavior. SIAM J. Appl. Math. 54, 249–272 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Naidu, D.S., Calise, A.J.: Singular perturbations and time scales in guidance and control of aerospace systems: a survey. J. Guid. Control Dyn. 24, 1057–1078 (2001)

    Article  Google Scholar 

  38. Naidu, D.S.: Singular perturbations and time scales in control theory and applications: an overview. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 9, 233–278 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. O’Malley, R.E., Jr.: Historical Developments in Singular Perturbations. Springer, New York (2014)

  40. Pavel, L.: Game Theory for Control of Optical Networks. Birkhauser, Basel (2012)

    Book  MATH  Google Scholar 

  41. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Interscience, New York (1962)

    Google Scholar 

  42. Pena, M.L.: Asymptotic expansion for the initial value problem of the sunflower equation. J. Math. Anal. Appl. 143, 471–479 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  43. Reddy, P.B., Sannuti, P.: Optimal control of a coupled-core nuclear reactor by singular perturbation method. IEEE Trans. Automat. Control 20, 766–769 (1975)

    Article  Google Scholar 

  44. Sannuti, P.: On the controllability of singularly perturbed systems. IEEE Trans. Automat. Control 22, 622–624 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sannuti, P.: On the controllability of some singularly perturbed nonlinear systems. J. Math. Anal. Appl. 64, 579–591 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  46. Schöll, E., Hiller, G., Hövel, P., Dahlem, M.A.: Time-delayed feedback in neurosystems. Phil. Trans. R. Soc. A 367, 1079–1096 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shinar, J., Glizer, V.Y.: Solution of a delayed information linear pursuit-evasion game with bounded controls. Int. Game Theory Rev. 1, 197–217 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shinar, J., Glizer, V.Y., Turetsky, V.: The effect of pursuer dynamics on the value of linear pursuit-evasion games with bounded controls. In: Krivan, V., Zaccour, G. (eds.) Advances in Dynamic Games—Theory, Applications, and Numerical Methods, Annals of the International Society of Dynamic Games, vol. 13, pp. 313–350. Birkhauser, Basel (2013)

    Google Scholar 

  49. Stefanovic, N., Pavel, L.: A Lyapunov–Krasovskii stability analysis for game-theoretic based power control in optical links. Telecommun. Syst. 47, 19–33 (2011)

    Article  Google Scholar 

  50. Stefanovic, N., Pavel, L.: Robust power control of multi-link single-sink optical networks with time-delays. Autom. J. IFAC 49, 2261–2266 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Turetsky, V., Glizer, V.Y.: Continuous feedback control strategy with maximal capture zone in a class of pursuit games. Int. Game Theory Rev. 7, 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Turetsky, V., Glizer, V.Y.: Robust solution of a time-variable interception problem: a cheap control approach. Int. Game Theory Rev. 9, 637–655 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Turetsky, V., Shinar, J.: Missile guidance laws based on pursuit-evasion game formulations. Autom. J. IFAC 39, 607–618 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. Vinter, R.B., Kwong, R.H.: The infinite time quadratic control problem for linear systems with state and control delays: an evolution equation approach. SIAM J. Control Optim. 19, 139–153 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang, Y., Naidu, D.S., Cai, C., Zou, Y.: Singular perturbations and time scales in control theories and applications: an overview 2002–2012. Int. J. Inf. Syst. Sci. 9, 1–36 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery Y. Glizer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glizer, V.Y. Euclidean space output controllability of singularly perturbed systems with small state delays. J. Appl. Math. Comput. 57, 1–38 (2018). https://doi.org/10.1007/s12190-017-1092-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-017-1092-5

Keywords

Mathematics Subject Classification

Navigation