Skip to main content
Log in

A Crank–Nicolson difference scheme for the time variable fractional mobile–immobile advection–dispersion equation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A Crank–Nicolson finite difference scheme to solve a time variable order fractional mobile–immobile advection–dispersion equation is introduced and analyzed. Some a priori estimates of discrete \(L^2\)-norm with order of convergence \(O(\tau +h^2)\) are established on uniform grids where \(\tau \) and h are the steps sizes in time and space. Stability and convergence of the numerical solutions are presented in detail. Numerical examples are provided to verify the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhang, N., Deng, W., Wu, Y.: Finite difference/element method for a two-dimensional modified fractional diffusion equation. Adv. Appl. Math. Mech. 4(04), 496–518 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jiang, Y., Ma, J.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235(11), 3285–3290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, W., Da, X.: Finite central difference/finite element approximations for parabolic integro-differential equations. Computing 90(3–4), 89–111 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), A2976–A3000 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu, Y., Li, H., Gao, W., He, S., Fang, Z.: A new mixed element method for a class of time-fractional partial differential equations. Sci. World J. 141467 (2014)

  6. Zhao, Y., Chen, P., Bu, W. et al.: Two mixed finite element methods for time-fractional diffusion equations. J. Sci. Comput. 1–22 (2015). doi:10.1007/s10915-015-0152-y

  7. Liu, Y., Fang, Z., Li, H., He, S.: A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243, 703–717 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, Y., Du, Y., Li, H., et al.: An \(H^1\)-Galerkin mixed finite element method for time fractional reaction–diffusion equation. J. Appl. Math. Comput. 47(1–2), 103–117 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sousa, E.: A second order explicit finite difference method for the fractional advection diffusion equation. Comput. Math. Appl. 64(10), 3141–3152 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sousa, E.: An explicit high order method for fractional advection diffusion equations. J. Comput. Phys. 278, 257–274 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sousa, E.: Finite difference approximations for a fractional advection diffusion problem. J. Comput. Phys. 228(11), 4038–4054 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, J., Tang, Y., Vzquez, L., et al.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64(4), 707–720 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, X., Rui, H.: Characteristic block-centred finite difference methods for nonlinear convection-dominated diffusion equation. Int. J. Comput. Math. 1–19 (2015). doi:10.1080/00207160.2015.1109641

  14. Li, X., Rui, H.: A two-grid block-centered finite difference method for nonlinear non-fickian flow model. Appl. Math. Comput. 281, 300–313 (2016)

    Article  MathSciNet  Google Scholar 

  15. Liu, Z., Li, X.: A parallel CGS block-centered finite difference method for a nonlinear time-fractional parabolic equation. Comput. Methods Appl. Mech. Eng. 308, 330–348 (2016)

    Article  MathSciNet  Google Scholar 

  16. Cheng, A., Wang, H., Wang, K.: A Eulerian–Lagrangian control volume method for solute transport with anomalous diffusion. Numer. Methods Partial Differ. Eqs. 31(1), 253–267 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, F., Zhuang, P., Turner, I., et al.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38(15), 3871–3878 (2014)

    Article  MathSciNet  Google Scholar 

  18. Wei, L., He, Y.: Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems. Appl. Math. Model. 38(4), 1511–1522 (2014)

    Article  MathSciNet  Google Scholar 

  19. Liu, X., et al.: On some new integral inequalities of Gronwall–Bellman–Bihari type with delay for discontinuous functions and their applications. Indag. Math. 27, 1–10 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, Y., Li, X., Xu, C.: Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80(275), 1369–1396 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhao, X., Sun, Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile–immobile advection–dispersion model. Comput. Math. Appl. 66(5), 693–701 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Atangana, A.: On the stability and convergence of the time-fractional variable order telegraph equation. J. Comput. Phys. 293, 104–114 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Atangana, A., Baleanu, D.: Numerical solution of a kind of fractional parabolic equations via two difference schemes. Abstr. Appl. Anal. 141467 (2013)

  26. Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32(4), 561–581 (2009)

    Article  Google Scholar 

  27. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39(10) (2003). doi:10.1029/2003WR002141

  28. Liu, Qingxia, et al.: A RBF meshless approach for modeling a fractal mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection–dispersion models. Comput. Math. Appl. 64(10), 2990–3007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ashyralyev, A., Cakir, Z.: On the numerical solution of fractional parabolic partial differential equations with the Dirichlet condition. Discret. Dyn. Nat. Soc. (2012). doi:10.1155/2012/696179

  31. Ashyralyev, A., Cakir, Z.: Fdm for fractional parabolic equations with the Neumann condition. Adv. Differ. Eqs. 2013(1), 1–16 (2013)

    Article  MATH  Google Scholar 

  32. Karatay, I., Kale, N., Bayramoglu, S.R.: A new difference scheme for time fractional heat equations based on the Crank–Nicholson method. Fract. Calc. Appl. Anal. 16(4), 892–910 (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 91130010, 11471194 and 11571115, by the National Science Foundation under Grant DMS-1216923,by the OSD/ARO MURI Grant W911NF-15-1-0562, by the National Science and technology major projects of China under Grants 2011ZX05052 and 2011ZX05011-004, and by Natural Science Foundation of Shandong Province of China under Grant ZR2011AM015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengguang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, X. A Crank–Nicolson difference scheme for the time variable fractional mobile–immobile advection–dispersion equation. J. Appl. Math. Comput. 56, 391–410 (2018). https://doi.org/10.1007/s12190-016-1079-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-016-1079-7

Keywords

Mathematics Subject Classification

Navigation