Skip to main content
Log in

Integral boundary value problems for nonlinear non-instantaneous impulsive differential equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we study integral boundary value problems for two classes of nonlinear non-instantaneous impulsive ordinary differential equations. More precisely, one is integer order impulsive model, the other is fractional order impulsive model. By using standard fixed point approach, a series of existence results are presented under different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hernández, E., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141, 1641–1649 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benet, L.Z., Perotti, B.Y.T., Hardy, L.: Drug absorption, distribution, and elimination. In: Abraham, D.J. (ed.) Burger’s Medicinal Chemistry and Drug Discovery. Wiley, New York (1995)

    Google Scholar 

  3. Liu, S., Wang, J., Wei, W.: Iterative learning control based on noninstantaneous impulsive fractional order system. J. Vibr. Cont. 22, 1972–1979 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fečkan, M., Wang, J., Zhou, Y.: Existence of periodic solutions for nonlinear evolution equations with non-instantaneous impulses. Nonauton. Dyn. Syst. 1, 93–101 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Wang, J., Fečkan, M.: A general class of impulsive evolution equations. Topol. Meth. Nonlinear Anal. 46, 915–934 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Pierri, M., Henríquez, H.R., Prokczyk, A.: Global solutions for abstract differential equations with non-instantaneous impulses. Mediterr. J. Math. (2015). doi:10.1007/s00009-015-0609-0

  7. Hernández, E., Pierri, M., O’Regan, D.: On abstract differential equations with non instantaneous impulses. Topol. Methods Nonlinear Anal. 46, 1067–1085 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Agarwal, R., O’Regan, D., Hristova, S.: Stability by Lyapunov like functions of nonlinear differential equations with non-instantaneous impulses. J. Appl. Math. Comput. (2015). doi:10.1007/s12190-015-0961-z

  9. Agarwal, R., O’Regan, D., Hristova, S.: Stability by Lyapunov functions of Caputo fractional differential equations with non-instantaneous impulses. Electron. J. Differ. Eq. 58, 1–22 (2016)

  10. Wang, J., Li, X.: Periodic BVP for integer/fractional order nonlinear differential equations with non-instantaneous impulses. J. Appl. Math. Comput. 46, 321–334 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, J., Zhou, Y., Lin, Z.: On a new class of impulsive fractional differential equations. Appl. Math. Comput. 242, 649–657 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Wang, J., Lin, Z., Zhou, Y.: On the stability of new impulsive differential equations. Topol. Meth. Nonlinear Anal. 45, 303–314 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Lin, Z., Wang, J., Wei, W.: Fractional differential equation models with pulses and criterion for pest managemen. Appl. Math. Comput. 257, 398–408 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Wang, J., Lin, Z.: A class of impulsive nonautonomous differential equations and Ulam–Hyers–Rassias stability. Math. Meth. Appl. Sci. 38, 868–880 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, J., Fečkan, M., Zhou, Y.: Random noninstantaneous impulsive models for studying periodic evolution processes in pharmacotherapy. In: Luo, A., Merdan, H. (eds.) Mathematical Modeling and Applications in Nonlinear Dynamics, Nonlinear Systems and Complexity, vol. 14. Springer International Publishing, Switzerland (2016)

    Google Scholar 

  16. Abbas, S., Benchohra, M.: Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses. Appl. Math. Comput. 257, 190–198 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Abbas, S., Benchohra, M., Darwish, M.A.: New stability results for partial fractional differential inclusions with not instantaneous impulses. Frac. Calc. Appl. Anal. 18, 172–191 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Gautam, G.R., Dabas, J.: Mild solutions for class of neutral fractional functional differential equations with not instantaneous impulses. Appl. Math. Comput. 259, 480–489 (2015)

    MathSciNet  Google Scholar 

  19. Agarwal, R., Hristova, S., O’Regan, D.: A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations. Frac. Calc. Appl. Anal. 19, 290–318 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Wei, W., Xiang, X., Peng, Y.: Nonlinear impulsive integro-differential equation of mixed type and optimal controls. Optimization 55, 141–156 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank to the referee for valuable comments and suggestions which improved our paper. The authors acknowledge Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Unite Foundation of Guizhou Province ([2015]7640) and Outstanding Scientific and Technological Innovation Talent Award of Education Department of Guizhou Province ([2014]240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Wang, J. Integral boundary value problems for nonlinear non-instantaneous impulsive differential equations. J. Appl. Math. Comput. 55, 59–78 (2017). https://doi.org/10.1007/s12190-016-1025-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-016-1025-8

Keywords

Mathematics Subject Classification

Navigation