Skip to main content
Log in

Matrix method based on the second kind Chebyshev polynomials for solving time fractional diffusion-wave equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, the second kind Chebyshev polynomials (SKCPs) basis is used to solve time-fractional diffusion-wave equations with damping. We present some notations and definitions of the fractional calculus and introduce some basic properties of the SKCPs. Bivariate shifted SKCPs are defined and the operational matrix of fractional integration and some other needed operational matrices are constructed. Our approach uses the properties of bivariate shifted SKCPs to transform the considered problem to a matrix equation without using any collocation points. The main characteristic of this technique is that only a small number of the basic functions is needed to obtain a satisfactory result. An estimation of the error is given in the sense of Sobolev norms. Numerical examples are given to demonstrate the efficiency and accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Magin, R.L.: Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 32(1), 1–104 (2004)

    Article  Google Scholar 

  2. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, 161–208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50, 15–67 (1997)

    Article  Google Scholar 

  4. Mainardi, F.: Fractional calculus: ’some basic problems in continuum and statistical mechanics’. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer-Verlag, New York (1997)

    Chapter  Google Scholar 

  5. He, J.H.: Nonlinear oscillation with fractional derivative and its applications, In: International Conference on Vibrating Engineering, Dalian, pp. 288–291 (1998)

  6. Baillie, R.T.: Long memory processes and fractional integration in econometrics. J. Econom. 73, 5–59 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. He, J.H.: Some applications of nonlinear fractional differential equations and their applications. Bull. Sci. Technol. 15(2), 86–90 (1999)

    Google Scholar 

  8. Mandelbrot, B.: Some noises with 1/f spectrum, a bridge between direct current and white noise. IEEE Trans. Inf. Theory 13(2), 289–298 (1967)

    Article  MATH  Google Scholar 

  9. Bagley, R.L., Torvik, P.J.: Fractional calculus: a different approach to the analysis of viscoelastically damped structures. AIAA J. 21(5), 741–748 (1983)

    Article  MATH  Google Scholar 

  10. Gaul, L., Klein, P., Kempfle, S.: Impulse response function of an oscillator with fractional derivative in damping description. Mech. Res. Commun. 16(5), 297–305 (1989)

    Article  Google Scholar 

  11. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Part II. J. Roy. Austral. Soc 13, 529–539 (1967)

    Article  MathSciNet  Google Scholar 

  12. Momani, S., Al-Khaled, K.: A numerical solutions for systems of fractional differential equations by the decomposition method. Appl. Math. Comput. 162(3), 1351–1365 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Momani, S.: An explicit and numerical solutions of the fractional KdV equation. Math. Comput. Simulat. 70(2), 110–118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Momani, S.: Non-perturbative analytical solutions of the space- and time-fractional Burgers equations. Chaos Soliton. Fract. 28(4), 930–937 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Momani, S., Odibat, Z.: Analytical solution of a time-fractional NavierStokes equation by Adomian decomposition method. Appl. Math. Comput. 177, 488–494 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Odibat, Z., Momani, S.: Approximate solutions for boundary value problems of time-fractional wave equation. Appl. Math. Comput. 181, 1351–1358 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Odibat, Z., Momani, S.: Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 7(1), 27–34 (2006)

    Article  MathSciNet  Google Scholar 

  18. Momani, S., Odibat, Z.: Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Soliton. Fract. 31(5), 1248–1255 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Momani, S., Odibat, Z.: Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 207(1), 96–110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Odibat, Z., Momani, S.: Numerical methods for solving nonlinear partial differential equations of fractional order. Appl. Math. Model. 32(1), 28–39 (2008)

    Article  MATH  Google Scholar 

  21. Odibat, Z., Momani, S.: Modified homotopy perturbationmethod: application to quadratic Riccati differential equation of fractional order. Chaos Soliton. Fract. 36(1), 167–174 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jafari, H., Kadkhoda, N., Tajadodi, H., HosseiniMatikolai, S.A.: Homotopy perturbation pade technique for solving fractional Riccati differential equations. Int. J. Nonlinear Sci. Numer. Simul. 11, 271–275 (2010)

    MathSciNet  Google Scholar 

  23. Momani, S., Odibat, Z.: Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 365(56), 345–350 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chowdhury, M.S., Hashim, I., Momani, S.: The multistage homotopy perturbation method: a powerful scheme for handling the Lorenz system. Chaos Soliton. Fract. 40(4), 1929–1937 (2009)

    Article  MATH  Google Scholar 

  25. Cang, J., Tan, Y., Xu, H., Liao, S.J.: Series solutions of non-linear Riccati differential equations with fractional order. Chaos Soliton. Fract. 40(1), 1–9 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hashim, I., Abdulaziz, O., Momani, S.: Homotopy analysis method for fractional IVPs. Commun. Nonlinear Sci. Numer. Simul. 14(3), 674–684 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Erturk, V., Momani, S., Odibat, Z.: Application of generalized differential transform method to multi-order fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 13(8), 1642–1654 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Odibat, Z., Momani, S.: A generalized differential transform method for linear partial differential equations of fractional order. Appl. Math. Lett. 21(2), 194–199 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Momani, S., Odibat, Z., Erturk, V.: Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation. Phys. Lett. A 370(56), 379–387 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Momani, S., Odibat, Z.: A novel method for nonlinear fractional partial differential equations: combination of DTM and generalized Taylors formula. J. Comput. Appl. Math. 220(12), 85–95 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lynch, V.E., Carreras, B.A.: D. del-Castillo-Negrete, K.M. Ferriera-Mejias, H.R. Hicks, Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192, 406–421 (2003)

    Article  MathSciNet  Google Scholar 

  34. Kai, Diethelm, Guido, Walz: Numerical solution of fractional order differential equations by extrapolation. Numer. Algorithms 16, 231–253 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jafari, H., Yousefi, S.A., Firoozjaee, M.A., Momani, S., Khalique, C.M.: Application of Legendre wavelets for solving fractional differential equations. Comput. Math. Appl. 62, 1038–1045 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 9–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen, J., Liu, F., Anh, V., Shen, S., Liu, Q., Liao, C.: The analytical solution and numerical solution of the fractional diffusion-wave equation with damping. Appl. Math. Comput. 219, 1737–1748 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. (2014). doi:10.1016/j.jcp.2014.03.039

  39. Yang, J.Y., Huang, J.F., Liang, D.M., Tang, Y.F.: Numerical solution of fractional diffusion-wave equation based on fractional multistep method. Appl. Math. Model. 38(14), 3652–3661 (2014)

    Article  MathSciNet  Google Scholar 

  40. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods Fundamentals in Single Domains. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  41. Jeffrey, A., Dai, H.H.: Handbook of Mathematical Formulas and Integrals. Academic Press, London (2008)

    MATH  Google Scholar 

  42. Kurtz, D.S., Swartz, C.W.: Theories of Integration: the Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and Mcshane. World Scientific, Punta Gorda (2004)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nemati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemati, S., Sedaghat, S. Matrix method based on the second kind Chebyshev polynomials for solving time fractional diffusion-wave equations. J. Appl. Math. Comput. 51, 189–207 (2016). https://doi.org/10.1007/s12190-015-0899-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-015-0899-1

Keywords

Mathematics Subject Classification

Navigation