Skip to main content
Log in

Existence and finite-time stability results for impulsive fractional differential equations with maxima

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we firstly establish an interesting impulsive Gronwall inequality with maxima involving Hadamard type singular kernel, which can be applied to make prior estimation. Secondly, we apply the above inequality and fixed point approach to show two existence results. Further, we show that finite-time stability result. Finally, an example is given to illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lazarević, M.P.: Finite time stability analysis of \(PD^{\alpha }\) fractional control of robotic time-delay systems. Mech. Res. Commun. 33, 269–279 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, Y.Q., Ahn, H., Podlubny, I.: Robust stability check of fractional order linear time invariant systems with interval uncertainties. Signal Process. 86, 2611–2618 (2006)

    Article  MATH  Google Scholar 

  3. Chen, Y.Q., Moore, K.L.: Analytical stability bound for a class of delayed fractional-order dynamic systems. Nonlinear Dyn. 29, 191–200 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonnet, C., Partington, J.R.: Stabilization of fractional exponential systems including delays. Kybernetika 37, 345–353 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Bonnet, C., Partington, J.R.: Analysis of fractional delay systems of retarded and neutral type. Automatica 38, 1133–1138 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, J., Zhang, Y.: Ulam-Hyers-Mittag-Leffler stability of fractional order delay differential equations. Optimization 63, 1181–1190 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baleanu, D., Machado, J.A.T., Luo, A.C.J.: Fractional Dynamics and Control. Springer, New York (2012)

    Book  Google Scholar 

  8. Diethelm, K.: The analysis of fractional differential equations. Lecture Notes in Mathematics (2010)

  9. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Science B.V., Amsterdam, Boston (2006)

    MATH  Google Scholar 

  10. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)

    MATH  Google Scholar 

  11. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  12. Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, HEP, New York, Beijing (2011)

    Google Scholar 

  13. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  14. Stamova, I., Stamov, G.: Stability analysis of impulsive functional systems of fractional order. Commun. Nonlinear Sci. Numer. Simul. 19, 702–709 (2014)

    Article  MathSciNet  Google Scholar 

  15. Li, Y., Chen, Y., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Y., Chen, Y., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ren, F., Cao, F., Cao, J.: Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks. Neurocomputing 160, 185–190 (2015)

    Article  Google Scholar 

  18. Abbas, S., Benchohra, M., Rivero, M., Trujillo, J.J.: Existence and stability results for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes quadratic integral equations. Appl. Math. Comput. 247, 319–328 (2014)

    Article  MathSciNet  Google Scholar 

  19. Lazarević, M.P., Spasić, A.M.: Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach. Math. Comput. Model. 49, 475–481 (2009)

    Article  MATH  Google Scholar 

  20. Wang, Q., Lu, D., Fang, Y.: Stability analysis of impulsive fractional differential systems with delay. Appl. Math. Lett. 40, 1–6 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, J., Zhou, Y., Fečkan, M.: Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math. Appl. 64, 3389–3405 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, J., Zhou, Y., Medveď, M.: Existence and stability of fractional differential equations with Hadamard derivative. Topol. Methods Nonlinear Anal. 41, 113–133 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Ma, Q., Wang, J., Wang, R., Ke, X.: Study on some qualitative properties for solutions of a certain two-dimensional fractional differential system with Hadamard derivative. Appl. Math. Lett. 36, 7–13 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, J., Zhang, Y.: On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives. Appl. Math. Lett. 39, 85–90 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ma, Q., Wang, R., Wang, J., Ma, Y.: Qualitative analysis for solutions of a certain more generalized two-dimensional fractional differential system with Hadamard derivative. Appl. Math. Comput. 257, 436–445 (2014)

    Article  MathSciNet  Google Scholar 

  27. Thiramanus, P., Tariboon, J., Ntouyas, S.K.: Integral inequalities with “maxima” and their applications to Hadamard type fractional differential equations, Abst. Appl. Anal., 2014(2014), Article ID 276316, 10 pages

Download references

Acknowledgments

The authors are grateful to the referees for their careful reading of the manuscript and valuable comments. The authors thank the help from the editor too. This work is supported by the National Natural Science Foundation of China (11201091) and Outstanding Scientific and Technological Innovation Talent Award of Education Department of Guizhou Province ([2014]240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, J. Existence and finite-time stability results for impulsive fractional differential equations with maxima. J. Appl. Math. Comput. 51, 67–79 (2016). https://doi.org/10.1007/s12190-015-0891-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-015-0891-9

Keywords

Mathematics Subject Classification

Navigation