Skip to main content

Advertisement

Log in

Global stability analysis of HIV-1 infection model with three time delays

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Mathematical model for the effect of reverse transcriptase inhibitor on the dynamics of HIV-1 infection model with three delays is proposed and analyzed. We begin this model with proving the positivity and boundedness of the solution. We analyze the stability of the viral free steady state and the infected steady state of the system. Also we have carried out bifurcation analysis along with an estimated length of delay to preserve the stability behaviour. By developing a few Lyapunov functionals, we obtain conditions ensuring global stability of steady states. Numerical simulations are carried out to explain the mathematical conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  2. Brauer, F., Castillo-Chavez, C.: Mathmatical Model in Population Biology and Epidemiology. Springer, New York (2001)

    Book  Google Scholar 

  3. Nowak, M.A., May, R.M.: Virus Dynamics. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  4. Joint United Nations Programme on HIV/AIDS, AIDS epidemic updates (2004)

  5. Bos, J.M., Postma, M.J.: The economics of HIV vaccines. Pharmacoeconomics 19, 937–946 (2001)

    Article  Google Scholar 

  6. Joint United Nations Programme on HIV/AIDS. AIDS vaccines research in Asia: needs and opportunities. AIDS 13, 1–13 (1999)

  7. Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M., Markowitz, M.: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995)

    Article  Google Scholar 

  8. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life span, and viral generation time. Science 271, 1582–1586 (1996)

    Article  Google Scholar 

  9. Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–44 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wei, X., Ghosh, S.K., Taylor, M.E., Johnson, V.A., Emini, E.A., Deutsch, P., Lifson, J.D., Bonhoeffer, S., Nowak, M.A., Hahn, B.H., Saag, M.S., Shaw, G.M.: Viral dynamics in human immunodeficiency-virus type-1 infection. Nature 373, 117–122 (1995)

    Article  Google Scholar 

  11. Nowak, M.A., Bonhoeffer, S., Shaw, G.M., May, R.M.: Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. J. Theor. Biol. 184, 203–217 (1997)

    Article  Google Scholar 

  12. Kepler, T.B., Perelson, A.S.: Drug concentration heterogeneity facilitates the evolution of drug resistance. Proc. Natl. Acad. Sci. USA 95, 11514–11519 (1998)

    Article  MATH  Google Scholar 

  13. Smith, R.J., Wahl, L.M.: Distinct effects of protease and reverse transcriptase inhibition in an immunological model of HIV-1 infection with impulsive drug effects. Bull. Math. Biol. 66, 1259–1283 (2004)

    Article  MathSciNet  Google Scholar 

  14. Ouifki, R., Witten, G.: A model of HIV-1 infection with HAART therapy and intracellualar delay. Discret. Control Dyn. Syst. B 8, 229–240 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Xiao, Y., Miao, H., Tang, S., Wu, H.: Modeling antiretroviral drug responses for HIV-1 infected patients using differential equation models. Adv. Drug Deliv. Rev. 65, 940–953 (2013)

    Article  Google Scholar 

  16. Bhunu, C.P., Garira, W., Magombedze, G.: Mathematical analysis of a two strain HIV/AIDS model with antiretroviral treatment. Acta Biotheor. 1–21 (2009). doi:10.1007/s10441-009-9080-2

  17. Finzi, D., Hermankova, M., Pierson, T., Carruth, L.M., Buck, C., Chaisson, R.E., Cuinn, T.C., Chadwick, K., Margolick, J., Brookmayer, R., Gallant, J., Makowitz, M., Ho, D.D., Richman, D.D., Silliciano, R.F.: Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300 (1997)

    Article  Google Scholar 

  18. Wong, J.K., Hezareh, M., Gunthard, H.F., Havlir, D.V., Ignacio, C.C., Spina, C.A., Richman, D.D.: Recovery of replication-component HIV despite prolonged suppression of plasma viremia. Science 278, 1291–1295 (1997)

    Article  Google Scholar 

  19. Liu, S., Wang, L.: Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Math. Biosci. Eng. 7(3), 675–685 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pitchaimani, M., Monica, C.: Stability analysis for HIV-1 infection dynamics using the matrix lambert \(W\) function. Proc. IJMS 3–4(2), 423–432 (2012)

    Google Scholar 

  21. Banks, H.T., Bortz, D.M.: A parameter sensitivity methodology in the context of HIV delay equation models. J. Math. Biol. 50, 607–625 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Banks, H.T., Bortz, T.M., Holte, S.E.: Incorporation of variability into the modeling of viral delays in HIV infection dynamics. Math. Biosci. 183, 63–91 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pitchaimani, M., Monica, C., Divya, M.: Stability analysis for HIV infection model with protease inhibitor. Biosystems 114, 118–124 (2013)

    Article  Google Scholar 

  24. Culshaw, R.V., Ruan, S., Webb, G.: A mathematical model of cell to cell spread of HIV-1 that includes a time delay. J. Math. Biol. 46, 425–444 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Dixit, N.M., Perelson, A.S.: Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay. J. Theor. Biol. 226, 95–109 (2004)

    Article  MathSciNet  Google Scholar 

  26. Li, M.Y., Shu, H.: Global dynamics of an in-host viral model with intracellular delay. Bull. Math. Biol. 72, 1492–1505 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang, Y., Zhao, Y., Wu, J.: Heffernan, oscillatory viral dynamics in delayed HIV pathogenesis model. Math. Biosci. 219, 104–112 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zhu, H., Zou, X.: Dynamics of HIV-1 infection model with cell mediated immune response and intracellular delay. Discret. Control Dyn. Syst. B 12, 511–524 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Herz, V., Bonhoeffer, S., Anderson, R., May, R., Nowak, M.: Viral dynamics in vivo: limitations on estimations on intracellular delay and virus decay. Proc. Nat. Acad. Sci. 93, 7247–7251 (1996)

    Article  Google Scholar 

  30. Mittler, J.M., Sulzer, B., Neumann, A.U., Perelson, A.S.: Influence of delayed viral production on viral dynamics in HIV-1 infected patients. Math. Biosci. 152, 143–163 (1998)

    Article  MATH  Google Scholar 

  31. Nelson, P.W., Murray, J.D., Perelson, A.S.: A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. 163, 201–215 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Culshaw, R.V., Ruan, S.: A delay differential equation model of HIV infection of \(\text{ CD }4^+ \, T\) cells. Math. Biosci. 165, 27–39 (2000)

    Article  MATH  Google Scholar 

  33. Nelson, P.W., Perelson, A.S.: Mathematical Analysis of delay differential equation models of HIV-1 infection. Math. Biosci. 179, 73–94 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Miao, H., Abdurahman, X., Muhammadhaji, A.: Global stability of HIV-1 infection model with two time delays. Abstr. Appl. Anal. 1–12 (2013). doi:10.1155/2013/163484

  35. Wang, L., Li, M.Y.: Mathematical analysis of the global dynamics of a model for HIV infection of CD4\(^{+}\) T cells. Math. Biosci. 200, 44–57 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Elaiw, A., Hassanien, I., Azoz, S.: Global stability of HIV infection models with intracellular delays. J. Korean Math. Soc. 49, 779–794 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Elaiw, A.: Global properties of a class of HIV models. Nonlinear Anal. Real World Appl. 11(4), 2253–2263 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Buonomo, B., Leon, C.V.: Global stability for an HIV-1 infection model including an eclipse stage of infected cells. J. Math. Anal. Appl. 385, 709–720 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. Korobeinikov, A.: Lyapunov functions and global properties for SEIR and SEIS epidemic models. IMA J. Math. Appl. Med. Biol. 21, 75–83 (2004)

    Article  MATH  Google Scholar 

  40. Korobeinikov, A., Wake, G.C.: Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl. Math. Lett. 15, 955–960 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  41. McCluskey, C.C.: Global stability for a class of mass action systems allowing for latency in tuberculosis. J. Math. Anal. Appl. 338, 518–535 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  42. Pawelek, K.A., Liu, S., Pahlevani, F., Rong, L.: A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data. Math. Biosci. 235(1), 98–109 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Perelson, A.S., Kirschner, D.E., De Boer, R.: Dynamics of HIV infection of \(\text{ CD }^+\) T-cells. Math. Biosci. 114, 81–125 (1993)

    Article  MATH  Google Scholar 

  44. Kirschner, D.E.: Using mathematics to understand HIV immune dynamics. Not. Am. Math. Soc. 43, 191–202 (1996)

    MATH  MathSciNet  Google Scholar 

  45. Ding, Y.S., Wang, Z.D., Ye, H.P.: Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Control Syst. Technol. 20(3), 763–769 (2012)

    Article  Google Scholar 

  46. Ding, Y.S., Ye, H.P.: A fractional-order differential equation model of HIV infection of \(\text{ CD }4^+\, T\)-cells. Math. Comput. Model. 50, 386–392 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  47. Yan, Y., Kou, C.: Stability analysis for a fractional differential model of HIV infection of \(\text{ CD }4^+\, T\)-cells with time delay. Math. Comput. Simul. 82, 1572–1585 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  48. Zhuang, K., Zhu, H.: Stability and bifurcation analysis for an improved HIV model with time delay and cure rate. WSEAS Trans. Math. 12(8), 860–869 (2013)

    Google Scholar 

  49. Song, X.Y., Cheng, S.H.: A delay differential equation model of HIV infection of \(\text{ CD }4^+\, T\)-cells. J. Korean Math. Soc. 42(5), 1071–1086 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  50. Song, F., Wang, X., Song, X.: Stability properties of a delayed viral infection model with lytic immune responsey. J. Appl. Math. Inform. 29, 1117–1127 (2011)

    MATH  MathSciNet  Google Scholar 

  51. Stafford, M., Corey, L., Cao, Y., Daar, E., Ho, D., Perelson, A.S.: Modeling plasma virus concentration during primary infection. J. Theor. Biol. 203, 285–301 (2000)

    Article  Google Scholar 

  52. Ciupe, M.S., Bivort, B.L., Bortz, D.M., Nelson, P.W.: Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. J. Math. Bio. Sci. 200, 1–27 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  53. De Boer, R.J., Perelson, A.S.: Target cell limited and immune control models of HIV infection: a comparison. J. Theor. Biol. 190, 201–214 (1998)

    Article  Google Scholar 

  54. Nowak, M., Bangham, C.: Population dynamics of immune response to persistent viruses. Science 272, 74–79 (1996)

    Article  Google Scholar 

  55. Liu, W.: Nonlinear oscillation in models of immune response to persistent viruses. Theor. Popul. Biol. 52, 224–230 (1997)

    Article  MATH  Google Scholar 

  56. Zurakowski, R., Teel, A.R.: A model predictive control based scheduling method for HIV therapy. J. Theor. Biol. 238, 368–382 (2006)

    Article  MathSciNet  Google Scholar 

  57. Denny, T., Jensen, B., Gavin, E., Louzao, A., Vella, F., Oleske, J., Wong, W.: Determination of CD4 and CD8 lymphocyte subsets by a new alternative fluorescence immunoassay. Clin. Diag. Lab. Immunol. 2, 330–336 (1995)

    Google Scholar 

  58. Roederer, M., Dubs, J., Anderson, M., Raju, P., Herzenberg, L.: CD8 naive \(T\)- cell counts decrease progressively in HIV infection adults. J. Clin. Invest. 95, 2061–2066 (1995)

  59. Mittler, J.E., Markowitz, M., Ho, D.D., Perelson, A.S.: Improved estimates for HIV-1 clearance rate and intracellular delay. AIDS 13, 1415–1417 (1999)

    Article  Google Scholar 

  60. Koup, R.A., Safrit, J.T., Cao, Y., Andrews, C.A., McLeod, G., Borkowsky, W., Farthing, C., Ho, D.D.: Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 68, 4650–4655 (1994)

    Google Scholar 

  61. MacDonald, N.: Biological Delay Systems: Linear Stability Theory. Cambridge University, Cambridge (1989)

    MATH  Google Scholar 

  62. Hale, J.K., Verduyn Lunel, G.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  63. Kuang, Y.: Delay Differential Equations with Applications in Populatin Dynamics. Academic Press Inc., San Diego (1993)

    Google Scholar 

  64. Freedman, H.I., Rao, V.S.H.: Stability criteria for a system involving two time delays SIAM. J. Appl. Math. 46(4), 552–560 (1986)

    MATH  MathSciNet  Google Scholar 

  65. Freedman, H.I.: Stability analysis of a predator-prey system with mutual interference and density-dependent death rates. Bull. Math. Biol. 41, 67–78 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pitchaimani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitchaimani, M., Monica, C. Global stability analysis of HIV-1 infection model with three time delays. J. Appl. Math. Comput. 48, 293–319 (2015). https://doi.org/10.1007/s12190-014-0803-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-014-0803-4

Keywords

Mathematics Subject Classification

Navigation