Skip to main content
Log in

A finite iterative algorithm for Hermitian reflexive and skew-Hermitian solution groups of the general coupled linear matrix equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we focus on the following coupled linear matrix equations

$$\begin{aligned} \mathcal {M}_i(X,Y)={\mathcal {M}_{i1}(X)+\mathcal {M}_{i2}(Y)}=L_i, \end{aligned}$$

with

$$\begin{aligned} {\mathcal {M}_{i \ell }(W)}&= \sum \limits _{j = 1}^{q } \left( {{\sum \limits _{\lambda = 1}^{t_1^{(\ell )} } {A_{ij\lambda }^{(\ell )} } } W_j B^{(\ell )}_{ij\lambda } + {\sum \limits _{\mu = 1}^{t_2^{(\ell )} } {C_{ij\mu }^{(\ell )} \overline{W} _j D^{(\ell )}_{ij\mu } } } + {\sum \limits _{\nu = 1}^{t_3^{(\ell )} } {E^{(\ell )}_{ij\nu } W_{j}^T F^{(\ell )}_{ij\nu } } }}\right) , \\&\ell =1,2. \end{aligned}$$

where \(A^{(\ell )}_{ij\lambda },B^{(\ell )}_{ij\lambda }\), \(C^{(\ell )}_{ij\mu }, D^{(\ell )}_{ij\mu }\), \(E^{(\ell )}_{ij\nu },F^{(\ell )}_{ij\nu }\) and \(L_i\) (for \(i \in I[1,p]\)) are given matrices with appropriate dimensions defined over complex number field. Our object is to obtain the solution groups \(X=(X_1,X_2,\ldots ,X_q)\) and \(Y=(Y_1,Y_2,\ldots ,Y_q)\) of the considered coupled linear matrix equations such that \(X\) and \(Y\) are the groups of the Hermitian reflexive and skew-Hermitian matrices, respectively. To do so, an iterative algorithm is proposed which stops within finite number of steps in the exact arithmetic. Moreover, the algorithm determines the solvability of the mentioned coupled linear matrix equations over the Hermitian reflexive and skew-Hermitian matrices, automatically. In the case that the coupled linear matrix equations are consistent, the least-norm Hermitian reflexive and skew-Hermitian solution groups can be computed by choosing suitable initial iterative matrix groups. In addition, the unique optimal approximate Hermitian reflexive and skew-Hermitian solution groups to given arbitrary matrix groups are derived. Finally, some numerical experiments are reported to illustrate the validity of our established theoretical results and feasibly of the presented algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Al Zhour, Z., Kilicman, A.: Some new connections between matrix products for partitioned and non-partitioned matrices. Comput. Math. Appl. 54(6), 763–784 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beik, F.P.A., Salkuyeh, D.K.: On the global Krylov subspace methods for solving general coupled matrix equations. Comput. Math. Appl. 62(12), 4605–4613 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beik, F.P.A., Salkuyeh, D.K.: The coupled Sylvester-transpose matrix equations over generalized centro-symmetric matrices. Int. J. Comput. Math. 90(7), 1546–1566 (2013)

    Article  MATH  Google Scholar 

  4. Beik, F.P.A., Salkuyeh, D.K., Moghadam, M.M.: Gradient-based iterative algorithm for solving the generalized coupled Sylvester-transpose and conjugate matrix equations over reflexive (anti-reflexive) matrices. Trans. Inst. Meas. Control 36(1), 99–110 (2014)

    Article  Google Scholar 

  5. Bernstein, D.S.: Matrix Mathematics: Theory, Facts, and Formulas, 2nd edn. Princeton University Press, Princeton (2009)

    Book  Google Scholar 

  6. Chang, X.W., Wang, J.S.: The symmetric solution of the matrix equations \(AX + YA = C\), \(AXA^T + BYB^T=C\) and \((A^TXA, B^T XB)=(C, D)\). Linear Algebra Appl. 179, 171–189 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, J.L., Chen, X.H.: Special Matrices. Qinghua University Press, Beijing (2001). (in Chinese)

    Google Scholar 

  8. Dehghan, M., Hajarian, M.: The general coupled matrix equations over generalized bisymmetric matrices. Linear Algebra Appl. 432(6), 1531–1552 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dehghan, M., Hajarian, M.: An iterative algorithm for solving a pair of matrix equation \(AYB=E\), \(CYD=F\) over generalized centro-symmetric matrices. Comput. Math. Appl. 56(12), 3246–3260 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dehghan, M., Hajarian, M.: Analysis of an iterative algorithm to solve the generalized coupled Sylvester matrix equations. Appl. Math. Model. 35(7), 3285–3300 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dehghan, M., Hajarian, M.: Two algorithms for finding the Hermitian reflexive and skew-Hermitian solutions of Sylvester matrix equations. Appl. Math. Lett. 24(4), 444–449 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ding, F., Chen, T.: Gradiant based iterative algorithms for solving a class of matrix equations. IEEE Trans. Autom. Control 50(8), 1216–1221 (2005)

    Article  MathSciNet  Google Scholar 

  13. Ding, F., Chen, T.: Iterative least-squares solutions of coupled Sylvester matrix equations. Syst. Control Lett. 54(2), 95–107 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ding, F., Chen, T.: On iterative solutions of general coupled matrix equations. SIAM J. Control Optim. 44(6), 2269–2284 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ding, F., Liu, P.X., Ding, J.: Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle. Appl. Math. Comput. 197(1), 41–50 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ding, J., Liu, Y.J., Ding, F.: Iterative solutions to matrix equations of form \(A_iXB_i=F_i\). Comput. Math. Appl. 59(11), 3500–3507 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ding, F.: Combined state and least squares parameter estimation algorithms for dynamic systems. Appl. Math. Model. 38(1), 403–412 (2014)

    Article  MathSciNet  Google Scholar 

  18. Ding, F., Liu, X., Chen, H., Yao, G.: Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems. Signal Proces. 97, 31–39 (2014)

    Article  Google Scholar 

  19. Hajarian, M., Dehghan, M.: The generalized centro-symmetric and least squares generalized centro-symmetric solutions of the matrix equation \(AYB+CY^TD=E\). Math. Methods Appl. Sci. 34(13), 1562–1579 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Huang, G.X., Ying, F., Gua, K.: An iterative method for skew-symmetric solution and the optimal approximate solution of the matrix equation \(AXB=C\). J. Comput. Appl. Math. 212(2), 231–244 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Huang, G.X., Wu, N., Yin, F., Zhou, Z.L., Guo, K.: Finite iterative algorithms for solving generalized coupled Sylvester systems Part I: one-sided and generalized coupled Sylvester matrix equations over generalized refexive solutions. Appl. Math. Model. 36(4), 1589–1603 (2014)

    Article  MathSciNet  Google Scholar 

  22. Jiang, J., Li, N.: An efficient algorithm for the generalized (P, Q)-reflexive solution to a quaternion matrix equation and its optimal approximation. J. Appl. Math. Comput. 45(1–2), 297–326 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jbilou, K., Riquet, A.J.: Projection methods for large Lyapunov matrix equations. Linear Algebra Appl. 415(2), 344–358 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, F.L., Hu, X.Y., Zhang, L.: The generalized anti-reflexive solutions for a class of matrix equation \((BX=C, XD=E)\). Comput. Appl. Math. 27(1), 31–46 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Li, J.F., Hu, X.Y., Duan, X.F., Zhang, L.: Iterative method for mirror-symmetric solution of matrix equation \(AXB+CYD=E\). Bull. Iran. Math. Soc. 36(2), 35–55 (2010)

    MathSciNet  Google Scholar 

  26. Liang, M.L., You, C.H., Dai, L.F.: An efficient algorithm for the generalized centro-symmetric solution of the matrix equation \(AXB=C\). Numer. Algorithms 44(2), 173–184 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Liu, Y., Ding, F., Shi, Y.: An efficient hierarchical identification method for general dual-rate sampled-data systems. Automatica 50(3), 962–970 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ramadan, M.A., Naby, M.A.A., Bayoumi, A.M.E.: Iterative algorithm for solving a class of general Sylvester-conjugate matrix equation \(\sum _{i=1}^s A_iV + \sum _{j=1}^tB_jW=\sum _{l=1}^mE_l\bar{V}F_l+C\). J. Appl. Math. Comput. 44(1–2), 99–118 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS press, New York (1995)

    Google Scholar 

  30. Salkuyeh, D.K., Toutounian, F.: New approaches for solving large Sylvester equations. Appl. Math. Comput. 173(1), 9–18 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Salkuyeh, D.K., Beik, F.P.A.: On the gradient based algorithm for solving the general coupled matrix equations. Trans. Inst. Meas. Control 36(3), 375–381 (2014)

    Article  Google Scholar 

  32. Song, C., Chen, G., Zhao, L.: Iterative solutions to coupled Sylvester-transpose matrix equations. Appl. Math. Model. 35(10), 4675–4683 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Song, C., Feng, J., Wang, X., Zhao, J.: Finite iterative method for solving coupled Sylvester-transpose matrix equations. J. Appl. Math. Comput. (2014). doi:10.1007/s12190-014-0753-x

  34. Wang, X., Wu, W.: A finite iterative algorithm for solving the generalized \((P, Q)-\) reflexive solution of the linear systems of matrix equations. Math. Comput. Model. 54(9), 2117–2131 (2011)

    Article  MATH  Google Scholar 

  35. Wu, A.G., Feng, G., Duan, G.R., Wu, W.J.: Finite iterative solutions to a class of complex matrix equations with conjugate and transpose unknowns. Math. Comput. Model. 52(9), 1463–1478 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wu, A.G., Lv, L., Duan, G.R.: Iterative algorithms for solving a class of complex conjugate and transpose matrix equations. Appl. Math. Comput. 217(21), 8343–8353 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wu, A.G., Li, B., Zhang, Y., Duan, G.R.: Finite iterative solutions to coupled Sylvester-conjugate matrix equations. Appl. Math. Model. 35(3), 1065–1080 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Xie, L., Ding, J., Ding, F.: Gradient based iterative solutions for general linear matrix equations. Comput. Math. Appl. 58(7), 1441–1448 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Yin, F., Huang, G.X., Chen, D.Q.: Finite iterative algorithms for solving generalized coupled Sylvester systems-Part II: two-sided and generalized coupled Sylvester matrix equations over refexive solutions. Appl. Math. Model. 36(4), 1604–1614 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  40. Zhang, J.J.: A note on the iterative solutions of general coupled matrix equation. Appl. Math. Comput. 217(22), 9380–9386 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Zhang, H.M., Ding, F.: A property of the eigenvalues of the symmetric positive definite matrix and the iterative algorithm for coupled Sylvester matrix equations. J. Frankl. Inst. Eng. Appl. Math. 351(1), 340–357 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  42. Zhou, B., Duan, G.R.: On the generalized Sylvester mapping and matrix equation. Syst. Control Lett. 57(3), 200–208 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  43. Zhou, B., Duan, G.R., Li, Z.Y.: Gradient based iterative algorithm for solving coupled matrix equations. Syst. Control Lett. 58(5), 227–333 (2009)

    Article  MathSciNet  Google Scholar 

  44. Zhou, B., Li, Z.Y., Duan, G.R., Wang, Y.: Weighted least squares solutions to general coupled Sylvester matrix equations. J. Comput. Appl. Math. 224(2), 759–776 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to express their heartfelt gratitude to the anonymous referees for their valuable suggestions and constructive comments which have improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Panjeh Ali Beik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beik, F.P.A., Salkuyeh, D.K. A finite iterative algorithm for Hermitian reflexive and skew-Hermitian solution groups of the general coupled linear matrix equations. J. Appl. Math. Comput. 48, 129–155 (2015). https://doi.org/10.1007/s12190-014-0795-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-014-0795-0

Keywords

Mathematics Subject Classification

Navigation