Skip to main content
Log in

Abstract

Given any complex number \(a\), we prove that there are infinitely many simple roots of the equation \(\zeta (s)=a\) with arbitrarily large imaginary part. Besides, we give a heuristic interpretation of a certain regularity of the graph of the curve \(t\mapsto \zeta ({1\over 2}+it)\). Moreover, we show that the curve \(\mathbb {R}\ni t\mapsto (\zeta ({1\over 2}+it),\zeta '({1\over 2}+it))\) is not dense in \(\mathbb {C}^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The paper [4] of Bohr, Landau and Littlewood consists of three independent chapters, the first belonging essentially to Bohr, the second to Landau, and the third to Littlewood.

  2. Recently, it was shown by Trudgian [27] that Gram’s law fails for a positive proportion. The first failure appears at \(t=282.454\).

References

  1. Akiyama, S., Tanigawa, Y.: Calculation of values of \(L\)-functions associated to elliptic curves. Math. Comp. 68, 1201–1231 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bohr, H., Courant, R.: Neue anwendungen der theorie der diophantischen approximationen auf die riemannsche zetafunktion. J. Reine Angew. Math. 144, 249–274 (1914)

    MATH  Google Scholar 

  3. Bohr, H., Jessen, B.: Über die werteverteilung der riemannschen zetafunktion, zweite mitteilung. Acta Math. 58, 1–55 (1932)

    Article  MathSciNet  Google Scholar 

  4. Bohr, H., Landau, E., Littlewood, J.E.: Sur la fonction \(\zeta (s)\) dans le voisinage de la droite \(\sigma = \frac{1}{2}\). Bull. Acad. Roy. Belg. 3–35 (1913)

  5. Bui, H.M., Heath-Brown, D.R.: On simple zeros of the Riemann zeta-function. Bull. Lond. Math. Soc. 45, 953–961 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bui, H.M., Conrey, J.B., Young, M.P.: More than 41 % of the zeros of the zeta function are on the critical line. Acta Arith. 150, 35–64 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Conrey, J.B.: More than two fifths of the zeros of the Riemann zeta-function are on the critical line. J. Reine Angew. Math. 399, 1–26 (1989)

    MATH  MathSciNet  Google Scholar 

  8. Conrey, J.B., Ghosh, A., Gonek, S.M.: Simple zeros of zeta functions, pp. 77–83. Nombres, Colloq. de Theorie Analyt. des (1985)

  9. Conrey, J.B., Ghosh, A., Gonek, S.M.: Simple zeros of the Riemann zeta-function. Proc. Lond. Math. Soc. III. Ser. 76, 497–522 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fujii, A.: On a conjecture of Shanks. Proc. Jpn. Acad. 70, 109–114 (1994)

    Article  MATH  Google Scholar 

  11. Fujii, A.: On a mean value theorem in the theory of the Riemann zeta-function. Comment. Math. Univ. St. Paul. 44, 59–67 (1995)

    MATH  MathSciNet  Google Scholar 

  12. Fujii, A.: On the distribution of values of the derivative of the Riemann zeta function at its zeros. I. Proc. Steklov Inst. Math. 276, 51–76 (2012)

    Article  MathSciNet  Google Scholar 

  13. Garunkštis, R., Laurinčikas, A., Matsumoto, K., Steuding, J., Steuding, R.: Effective uniform approximation by the Riemann zeta-function. Publ. Math. 54, 209–219 (2010)

    Article  MATH  Google Scholar 

  14. Gonek, S.M.: Mean values of the Riemann zeta-function and its derivatives. Invent. Math. 75, 123–141 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gonek, S.M., Lester, S.J., Milinovich, M.B.: A note on simple \(a\)-points of \(L\)-functions. Proc. Am. Math. Soc. 140(12), 4097–4103 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Haselgrove, C.B.: Tables of the Riemann Zeta function, Roy. Soc. Math. Tables. Vol. 6. Cambridge University Press, Cambridge (1960)

    Google Scholar 

  17. Hughes, C.P.: Random matrix theory and discrete moments of the Riemann zeta-function. J. Phys. A 36, 2907–2917 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ivić, A.: The Riemann Zeta-Function. John Wiley & Sons, New York (1985)

    MATH  Google Scholar 

  19. Levinson, N.: Almost all roots of \(\zeta (s)=a\) are arbitrarily close to \(\sigma ={\textstyle {1\over 2}}\). Proc. Nat. Acad. Sci. USA 72, 1322–1324 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  20. Patterson, S.J.: An introduction to the theory of the Riemann zeta-function. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  21. Selberg, A.: Old and new conjectures and results about a class of Dirichlet series. In: E. Bombieri et al. (eds.) Proceedings of the Amalfi Conference on Analytic Number Theory’, Maiori 1989, pp. 367–385. Università di Salerno (1992)

  22. Shanks, D.: Review of Haselgrove. Math. Comput. 15, 84–86 (1961)

    Article  MathSciNet  Google Scholar 

  23. Spira, R.: On the Riemann zeta function. J. London Math. Soc. 44, 325–328 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  24. Steuding, J.: On simple zeros of the Riemann zeta-function in short intervals on the critical line. Acta Math. Hung. 96, 259–308 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Steuding, J.: Value-Distribution of \(L\)-Functions, Lecture Notes in Mathematics, Vol. 1877. Springer, New York (2007)

    Google Scholar 

  26. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, revised by D.R. Heath-Brown, 2nd edn. Oxford University Press, Oxford (1986)

    Google Scholar 

  27. Trudgian, T.: On the success and failure of Gram’s law and the Rosser rule. Acta Arith. 148(3), 225–256 (2011)

    Google Scholar 

  28. Voronin, S.M.: The distribution of the non-zero values of the Riemann zeta-function. Izv. Akad. Nauk Inst. Steklov 128, 131–150 (1972). Russian

    MathSciNet  Google Scholar 

  29. Ye, Z.: The Nevanlinna functions of the Riemann zeta-function. J. Math. Anal. Appl. 233, 425–435 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramūnas Garunkštis.

Additional information

Communicated by Ulf Kühn.

The first author is supported by Grant No MIP-94 from the Research Council of Lithuania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garunkštis, R., Steuding, J. On the roots of the equation \(\zeta (s)=a\) . Abh. Math. Semin. Univ. Hambg. 84, 1–15 (2014). https://doi.org/10.1007/s12188-014-0093-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-014-0093-7

Keywords

Mathematics Subject Classification (2000)

Navigation