Skip to main content

Advertisement

Log in

Evolution in the management of chronic lymphocytic leukemia in Japan: should MRD negativity be the goal?

  • Progress in Hematology
  • B1cells: their ontogeny and malignant counterpart
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

A Correction to this article was published on 27 August 2022

This article has been updated

Abstract

Advances in the molecular biology of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and development of molecularly targeted therapies have resulted in treatment innovations. Therapeutic approaches for previously untreated CLL/SLL patients are changing from chemoimmunotherapy (CIT) to molecularly targeted drugs. The aim of therapy for CLL patients has been to control the disease; however, FCR (fludarabine, cyclophosphamide, rituximab) has improved outcomes and reduced the high incidence of undetectable minimum/measurable residual disease (MRD) in previously untreated CLL patients with no 17p deletion/TP53 disruption and mutated immunoglobulin heavy chain gene (IGHV). Patients achieving undetectable MRD in the bone marrow are expected to be cured. BTK inhibitors and BCL-2 inhibitors are effective for CLL/SLL patients. However, atrial fibrillation and bleeding are associated with the BTK inhibitor, ibrutinib, while tumor lysis syndrome is an adverse event (AE) of the BCL-2 inhibitor, venetoclax. Although these novel targeted drugs are very useful, they are also expensive. Emergence of resistant clones of CLL cells must also be addressed. Therefore, treatments of indefinite duration until progression have been replaced by fixed-duration treatments. This review introduces advances in the treatment of previously untreated CLL/SLL patients in Europe and the United States.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

References

  1. Campo E, Ghia P, Montserrat E, Harris NL, Müller-Hermelink HK, Stein H, et al. Chronic lymphocytic leukaemia/small lymphocytic lymphoma. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. World Health Organization classification of tumors. Lyon: IARC Press; 2017. p. 216–221.

    Google Scholar 

  2. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Döhner H, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745–60.

    Article  CAS  PubMed  Google Scholar 

  3. Hallek M. On the architecture of translational research designed to control chronic lymphocytic leukemia. Hematol Am Soc Hematol Educ Prog. 2018;2018(1):1–8.

    Article  Google Scholar 

  4. Hallek M. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am J Hematol. 2019;94(11):1266–87.

    Article  PubMed  Google Scholar 

  5. Tamura K, Sawada H, Izumi Y, Fukuda T, Utsunomiya A, Ikeda S, et al. Kyushu Hematology Organization for Treatment (K-HOT) Study Group. Chronic lymphocytic leukemia (CLL) is rare, but the proportion of T-CLL is high in Japan. Eur J Haematol. 2001;67(3):152–7.

    Article  CAS  PubMed  Google Scholar 

  6. Chihara D, Ito H, Matsuda T, Shibata A, Katsumi A, Nakamura S, et al. Differences in incidence and trends of haematological malignancies in Japan and the United States. Br J Haematol. 2014;164(4):536–45.

    Article  PubMed  Google Scholar 

  7. Hoechstetter MA, Busch R, Eichhorst B, Bühler A, Winkler D, Eckart MJ, et al. Early, risk-adapted treatment with fludarabine in Binet stage A chronic lymphocytic leukemia patients: results of the CLL1 trial of the German CLL study group. Leukemia. 2017;31(12):2833–7.

    Article  CAS  PubMed  Google Scholar 

  8. Schweighofer CD, Cymbalista F, Müller C, Busch R, Porcher R, Langerbeins P, et al. Early versus deferred treatment with combined fludarabine, cyclophosphamide and rituximab (FCR) improves event-free survival in patients with high-risk Binet stage a chronic lymphocytic leukemia—first results of a randomized German French cooperative phase III trial. Blood. 2013;122(21):524.

    Article  Google Scholar 

  9. Langerbeins P, Bahlo J, Rhein C, Gerwin H, Cramer P, Fürstenau M, et al. Ibrutinib versus placebo in patients with asymptomatic, treatment-naïve early stage chronic lymphocytic leukemia (CLL): primary endpoint results of the phase 3 double blind randomized CLL12 trial. European Hematology Association 2019 abstract LB2602. https://library.ehaweb.org/eha/2019/24th/273255/petra.langerbeins.ibrutinib.versus.placebo.in.patients.with.asymptomatic.html. Accessed 5 Apr 2020.

  10. Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376(9747):1164–74.

    Article  CAS  PubMed  Google Scholar 

  11. Fischer K, Bahlo J, Fink AM, Goede V, Herling CD, Cramer P, et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. 2016;127(2):208–15.

    Article  CAS  PubMed  Google Scholar 

  12. Thompson PA, Tam CS, O'Brien SM, Wierda WG, Stingo F, Plunkett W, et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood. 2016;127(3):303–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rummel MJ, Niederle N, Maschmeyer G, Banat GA, von Grünhagen U, Losem C, et al., Study group indolent Lymphomas (StiL). Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013;381(9873):1203–10.

    Article  CAS  PubMed  Google Scholar 

  14. Eichhorst B, Fink AM, Bahlo J, Busch R, Kovacs G, Maurer C, et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016;17(7):928–42.

    Article  CAS  PubMed  Google Scholar 

  15. Eichhorst B, Robak T, Montserrat E, Ghia P, Hillmen P, Hallek M, et al., ESMO Guidelines Committee. Chronic lymphocytic leukaemia: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Supplement 5):v78–v84.

    Article  PubMed  Google Scholar 

  16. Burger JA. Nurture versus nature: the microenvironment in chronic lymphocytic leukemia. Hematol Am Soc Hematol Educ Prog. 2011;2011:96–103.

    Article  Google Scholar 

  17. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA. 2010;107(29):13075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Singh J, Petter RC, Kluge AF. Targeted covalent drugs of the kinase family. Curr Opin Chem Biol. 2010;14(4):475–80.

    Article  CAS  PubMed  Google Scholar 

  19. de Rooij MF, Kuil A, Geest CR, Eldering E, Chang BY, Buggy JJ, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood. 2012;119(11):2590–4.

    Article  PubMed  CAS  Google Scholar 

  20. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Byrd JC, Furman RR, Coutre SE, Burger JA, Blum KA, Coleman M, et al. Three-year follow-up of treatment-naïve and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Byrd JC, Brown JR, O'Brien S, Barrientos JC, Kay NE, Reddy NM, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371:213–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Brown JR, Hillmen P, O'Brien S, Barrientos JC, Reddy NM, Coutre SE, et al. Extended follow-up and impact of high-risk prognostic factors from the phase 3 RESONATE study in patients with previously treated CLL/SLL. Leukemia. 2018;32:83–91.

    Article  CAS  PubMed  Google Scholar 

  24. Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P, et al., RESONATE-2 Investigators. Ibrutinib as Initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373(25):2425–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barr PM, Robak T, Owen C, Tedeschi A, Bairey O, Bartlett NL, et al. Sustained efficacy and detailed clinical follow-up of first-line ibrutinib treatment in older patients with chronic lymphocytic leukemia: extended phase 3 results from RESONATE-2. Haematologica. 2018;103(9):1502–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burger JA, Barr PM, Robak T, Owen C, Ghia P, Tedeschi A, et al. Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia. 2020;34(3):787–98.

    Article  CAS  PubMed  Google Scholar 

  27. Woyach JA, Ruppert AS, Heerema NA, Zhao W, Booth AM, Ding W, et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med. 2018;379(26):2517–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shanafelt TD, Wang XV, Kay NE, Hanson CA, O'Brien S, Barrientos J, et al. Ibrutinib-rituximab or chemoimmunotherapy for chronic lymphocytic leukemia. N Engl J Med. 2019;381(5):432–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shanafelt TD, Wang V, Kay NE, Hanson CA, O'Brien SM, Barrientos JC, et al. A randomized phase III study of ibrutinib (PCI-32765)-based therapy vs. standard fudarabine, cyclophosphamide, and rituximab (FCR) chemoimmunotherapy in untreated younger patients with chronic lymphocytic leukemia (CLL): A trial of the ECOG-ACRIN Cancer Research Group (E1912). Blood. 2019;134(Supplement_1):33. https://doi.org/10.1182/blood-2019-126824.

    Article  Google Scholar 

  30. Burger JA, Sivina M, Jain N, Kim E, Kadia T, Estrov Z, et al. Randomized trial of ibrutinib vs ibrutinib plus rituximab in patients with chronic lymphocytic leukemia. Blood. 2019;133(10):1011–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takizawa J, Suzuki R, Kiguchi T, Izutsu K, Asaoku H, Saburi Y, et al. Characteristics of chronic lymphocytic leukemia in Japan (CLLRSG-01 study). Leukemia Lymphoma. 2017;58:160–1.

    Google Scholar 

  32. Seymour EK, Ruterbusch JJ, Beebe-Dimmer JL, Schiffer CA. Real-world testing and treatment patterns in chronic lymphocytic leukemia: a SEER patterns of care analysis. Cancer. 2019;125(1):135–43.

    Article  CAS  PubMed  Google Scholar 

  33. Al-Sawaf O, Fischer K, Engelke A, Pflug N, Hallek M, Goede V, et al. Obinutuzumab in chronic lymphocytic leukemia: design, development and place in therapy. Drug Des Devel Ther. 2017;11:295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370(12):1101–10.

    Article  CAS  PubMed  Google Scholar 

  35. Moreno C, Greil R, Demirkan F, Tedeschi A, Anz B, Larratt L, et al. Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of chronic lymphocytic leukaemia (iLLUMINATE): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(1):43–56.

    Article  CAS  PubMed  Google Scholar 

  36. Brown JR, Moslehi J, Ewer MS, O'Brien SM, Ghia P, Cymbalista F, et al. Incidence of and risk factors for major haemorrhage in patients treated with ibrutinib: an integrated analysis. Br J Haematol. 2019;184(4):558–69.

    Article  CAS  PubMed  Google Scholar 

  37. Thompson PA, Lévy V, Tam CS, Al Nawakil C, Goudot FX, Quinquenel A, et al. Atrial fibrillation in CLL patients treated with ibrutinib. An international retrospective study. Br J Haematol. 2016;175(3):462–6.

    Article  CAS  PubMed  Google Scholar 

  38. Byrd JC, Harrington B, O'Brien S, Jones JA, Schuh A, Devereux S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):323–32.

    Article  CAS  PubMed  Google Scholar 

  39. Barf T, Covey T, Izumi R, van de Kar B, Gulrajani M, van Lith B, et al. Acalabrutinib (ACP-196): a covalent Bruton tyrosine knase inhibitor with a differentiated selectivity and in vivo potency profile. J Pharmacol Exp Ther. 2017;363(2):240–52.

    Article  CAS  PubMed  Google Scholar 

  40. Patel V, Balakrishnan K, Bibikova E, Ayres M, Keating MJ, Wierda WG, Gandhi V. Comparison of acalabrutinib, a selective Bruton tyrosine kinase inhibitor, with ibrutinib in chronic lymphocytic leukemia cells. Clin Cancer Res. 2017;23(14):3734–43.

    Article  CAS  PubMed  Google Scholar 

  41. Herman SEM, Montraveta A, Niemann CU, Mora-Jensen H, Gulrajani M, Krantz F, et al. The Bruton tyrosine kinase (BTK) inhibitor acalabrutinib demonstrates potent on-target effects and Eeficacy in two mouse models of chronic lymphocytic leukemia. Clin Cancer Res. 2017;23(11):2831–41.

    Article  CAS  PubMed  Google Scholar 

  42. Awan FT, Schuh A, Brown JR, Furman RR, Pagel JM, Hillmen P, et al. Acalabrutinib monotherapy in patients with chronic lymphocytic leukemia who are intolerant to ibrutinib. Blood Adv. 2019;3(9):1553–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sharman JP, Banerji V, Fogliatto LM, Herishanu Y, Munir T, Walewska R, et al. ELEVATE TN: Phase 3 study of acalabrutinib combined with obinutuzumab (O) or alone Vs O plus chlorambucil (Clb) in patients (Pts) with treatment-naive chronic lymphocytic leukemia (CLL). Blood. 2019;134(Supplement_1):31. https://doi.org/10.1182/blood-2019-128404.

    Article  Google Scholar 

  44. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013 Feb;19(2):202–8.

    Article  CAS  PubMed  Google Scholar 

  45. Stilgenbauer S, Eichhorst B, Schetelig J, Hillmen P, Seymour JF, Coutre S, et al. Venetoclax for patients with chronic lymphocytic leukemia with 17p deletion: results from the full population of a phase II pivotal trial. J Clin Oncol. 2018;36(19):1973–80.

    Article  CAS  PubMed  Google Scholar 

  46. Jones JA, Mato AR, Wierda WG, Davids MS, Choi M, Cheson BD, et al. Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: an interim analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol. 2018;19(1):65–75.

    Article  CAS  PubMed  Google Scholar 

  47. Seymour JF, Kipps TJ, Eichhorst B, Hillmen P, D'Rozario J, Assouline S, et al. Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med. 2018;378(12):1107–20.

    Article  CAS  PubMed  Google Scholar 

  48. Kater AP, Seymour JF, Hillmen P, Eichhorst B, Langerak AW, Owen C, et al. Fixed Duration of venetoclax-rituximab in relapsed/refractory chronic lymphocytic leukemia eradicates minimal residual disease and prolongs survival: post-treatment follow-up of the MURANO phase III study. J Clin Oncol. 2019;37(4):269–77.

    Article  CAS  PubMed  Google Scholar 

  49. Fischer K, Al-Sawaf O, Bahlo J, Fink AM, Tandon M, Dixon M, et al. Venetoclax and obinutuzumab in patients with CLL and coexisting conditions. N Engl J Med. 2019;380(23):2225–36.

    Article  CAS  PubMed  Google Scholar 

  50. Mato AR, Thompson M, Allan JN, Brander DM, Pagel JM, Ujjani CS, et al. Real-world outcomes and management strategies for venetoclax-treated chronic lymphocytic leukemia patients in the United States. Haematologica. 2018;103(9):1511–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rai KR, Peterson BL, Appelbaum FR, Kolitz J, Elias L, Shepherd L, et al. Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia. N Engl J Med. 2000;343(24):1750–7.

    Article  CAS  PubMed  Google Scholar 

  52. Eichhorst BF, Busch R, Stilgenbauer S, Stauch M, Bergmann MA, Ritgen M, et al. First-line therapy with fludarabine compared with chlorambucil does not result in a major benefit for elderly patients with advanced chronic lymphocytic leukemia. Blood. 2009;114(16):3382–91.

    Article  CAS  PubMed  Google Scholar 

  53. Foon KA, Boyiadzis M, Land SR, Marks S, Raptis A, Pietragallo L, et al. Chemoimmunotherapy with low-dose fludarabine and cyclophosphamide and high dose rituximab in previously untreated patients with chronic lymphocytic leukemia. J Clin Oncol. 2009;27:498–503.

    Article  CAS  PubMed  Google Scholar 

  54. Foon KA, Mehta D, Lentzsch S, Kropf P, Marks S, Lenzner D, et al. Long-term results of chemoimmunotherapy with low-dose fludarabine, cyclophosphamide and high-dose rituximab as initial treatment for patients with chronic lymphocytic leukemia. Blood. 2012;119(13):3184–5.

    Article  CAS  PubMed  Google Scholar 

  55. Herishanu Y, Tadmor T, Braester A, Bairey O, Aviv A, Rahimi-Levene N, et al. Low-dose fludarabine and cyclophosphamide combined with standard dose rituximab (LD-FCR) is an effective and safe regimen for elderly untreated patients with chronic lymphocytic leukemia: the Israeli CLL study group experience. Hematol Oncol. 2019;37(2):185–92.

    Article  CAS  PubMed  Google Scholar 

  56. Mato AR, Foon KA, Feldman T, Schuster SJ, Svoboda J, Chow KF, et al. Reduced-dose fludarabine, cyclophosphamide, and rituximab (FCR-Lite) plus lenalidomide, followed by lenalidomide consolidation/maintenance, in previously untreated chronic lymphocytic leukemia. Am J Hematol. 2015;90(6):487–92.

    Article  CAS  PubMed  Google Scholar 

  57. O'Brien S, Jones JA, Coutre SE, Mato AR, Hillmen P, Tam C, et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol. 2016;17(10):1409–18.

    Article  CAS  PubMed  Google Scholar 

  58. Jones J, Mato A, Coutre S, Byrd JC, Furman RR, Hillmen P, et al. Evaluation of 230 patients with relapsed/refractory deletion 17p chronic lymphocytic leukaemia treated with ibrutinib from 3 clinical trials. Br J Haematol. 2018;182(4):504–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Robak T, Burger JA, Tedeschi A, Barr PM, Owen C, Bairey O, et al. Single-agent ibrutinib versus chemoimmunotherapy regimens for treatment-naïve patients with chronic lymphocytic leukemia: a cross-trial comparison of phase 3 studies. Am J Hematol. 2018;93(11):1402–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen Q, Jain N, Ayer T, Wierda WG, Flowers CR, O'Brien SM, et al. Economic burden of chronic lymphocytic leukemia in the era of oral targeted therapies in the United States. J Clin Oncol. 2017;35(2):166–74.

    Article  CAS  PubMed  Google Scholar 

  61. Shanafelt TD, Borah BJ, Finnes HD, Chaffee KG, Ding W, Leis JF, et al. Impact of ibrutinib and idelalisib on the pharmaceutical cost of treating chronic lymphocytic leukemia at the individual and societal levels. J Oncol Pract. 2015;11(3):252–8.

    Article  PubMed  Google Scholar 

  62. Landau DA, Sun C, Rosebrock D, Herman SEM, Fein J, Sivina M, et al. The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy. Nat Commun. 2017;8:2185–2185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Blombery P, Anderson MA, Gong JN, Thijssen R, Birkinshaw RW, Thompson ER, et al. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. Cancer Discov. 2019;9(3):342–53.

    Article  CAS  PubMed  Google Scholar 

  64. Woyach JA, Ruppert AS, Guinn D, Lehman A, Blachly JS, Lozanski A, et al. BTKC481S-mediated resistance to ibrutinib in chronic lymphocytic leukemia. J Clin Oncol. 2017;35:1437–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kanagal-Shamanna R, Jain P, Patel KP, Routbort M, Bueso-Ramos C, Alhalouli T, et al. Targeted multigene deep sequencing of Bruton tyrosine kinase inhibitor-resistant chronic lymphocytic leukemia with disease progression and Richter transformation. Cancer. 2019;125(4):559–74.

    Article  CAS  PubMed  Google Scholar 

  66. Tam CS, O'Brien S, Wierda W, Kantarjian H, Wen S, Do KA, et al. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood. 2008;112(4):975–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bosch F, Ferrer A, Villamor N, González M, Briones J, González-Barca E, et al. Fludarabine, cyclophosphamide, and mitoxantrone as initial therapy of chronic lymphocytic leukemia: high response rate and disease eradication. Clin Cancer Res. 2008;14(1):155–61.

    Article  CAS  PubMed  Google Scholar 

  68. Thompson PA, Wierda WG. Eliminating minimal residual disease as a therapeutic end point: working toward cure for patients with CLL. Blood. 2016;127(3):279–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dimier N, Delmar P, Ward C, Morariu-Zamfir R, Fingerle-Rowson G, Bahlo J, et al. A model for predicting effect of treatment on progression-free survival using MRD as a surrogate end point in CLL. Blood. 2018;131(9):955–62.

    Article  CAS  PubMed  Google Scholar 

  70. Ghia P, Rawstron A. Minimal residual disease analysis in chronic lymphocytic leukemia: a way for achieving more personalized treatments. Leukemia. 2018;32(6):1307–16.

    Article  PubMed  Google Scholar 

  71. Heltai S, Ghia P, Scarfò L. Relevance of minimal residual disease in the era of targeted agents. Cancer J. 2019;25(6):410–7.

    Article  PubMed  Google Scholar 

  72. Thompson PA, Peterson CB, Strati P, Jorgensen J, Keating MJ, O'Brien SM, et al. Serial minimal residual disease (MRD) monitoring during first-line FCR treatment for CLL may direct individualized therapeutic strategies. Leukemia. 2018;32(11):2388–98.

    Article  PubMed  PubMed Central  Google Scholar 

  73. García-Marco JA, Jiménez JL, Recasens V, Zarzoso MF, González-Barca E, De Marcos NS, et al., GELLC Study Group. High prognostic value of measurable residual disease detection by flow cytometry in chronic lymphocytic leukemia patients treated with front-line fludarabine, cyclophosphamide, and rituximab, followed by 3 years of rituximab maintenance. Haematologica. 2019;104(11):2249–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013;152(4):714–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nadeu F, Delgado J, Royo C, Baumann T, Stankovic T, Pinyol M, et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood. 2016;127(17):2122–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Amin NA, Seymour E, Saiya-Cork K, Parkin B, Shedden K, Malek SN. A quantitative analysis of subclonal and clonal gene mutations before and after therapy in chronic lymphocytic leukemia. Clin Cancer Res. 2016;22(17):4525–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gruber M, Bozic I, Leshchiner I, Livitz D, Stevenson K, Rassenti L, et al. Growth dynamics in naturally progressing chronic lymphocytic leukaemia. Nature. 2019;570(7762):474–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gutierrez C, Wu CJ. Clonal dynamics in chronic lymphocytic leukemia. Blood Adv. 2019;3(22):3759–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Baliakas P, Jeromin S, Iskas M, Puiggros A, Plevova K, Nguyen-Khac F, et al. Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations and clinical impact. Blood. 2019;133(11):1205–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Furman RR, Sharman JP, Coutre SE, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370:997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Burger JA, O'Brien S. Evolution of CLL treatment - from chemoimmunotherapy to targeted and individualized therapy. Nat Rev Clin Oncol. 2018;15:510–27.

    Article  CAS  PubMed  Google Scholar 

  82. O'Brien S, Patel M, Kahl BS, Horwitz SM, Foss FM, Porcu P, et al. Duvelisib, an oral dual PI3K-δ, γ inhibitor, shows clinical and pharmacodynamic activity in chronic lymphocytic leukemia and small lymphocytic lymphoma in a phase 1 study. Am J Hematol. 2018;93(11):1318–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Flinn IW, Hillmen P, Montillo M, Nagy Z, Illés Á, Etienne G, et al. The phase 3 DUO trial: duvelisib vs ofatumumab in relapsed and refractory CLL/SLL. Blood. 2018;132(23):2446–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Morschhauser F, Fowler NH, Feugier P, Bouabdallah R, Tilly H, Palomba ML, et al., RELEVANCE Trial Investigators. Rituximab plus lenalidomide in advanced untreated follicular lymphoma. N Engl J Med. 2018;379(10):934–47.

    Article  CAS  PubMed  Google Scholar 

  85. Badoux XC, Keating MJ, Wen S, Lee BN, Sivina M, Reuben J, et al. Lenalidomide as initial therapy of elderly patients with chronic lymphocytic leukemia. Blood. 2011;118:3489–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Strati P, Keating MJ, Wierda WG, Badoux XC, Calin S, Reuben JM, et al. Lenalidomide induces long-lasting responses in elderly patients with chronic lymphocytic leukemia. Blood. 2013;122:734–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen CI, Paul H, Wang T, Le LW, Dave N, Kukreti V, et al. Long-term follow-up of a phase 2 trial of single agent lenalidomide in previously untreated patients with chronic lymphocytic leukaemia. Br J Haematol. 2014;165:731–3.

    Article  CAS  PubMed  Google Scholar 

  88. Kater AP, van Oers MHJ, van Norden Y, van der Straten L, Driessen J, Posthuma WFM, et al. Feasibility and efficacy of addition of individualized-dose lenalidomide to chlorambucil and rituximab as first-line treatment in elderly and FCR-unfit patients with advanced chronic lymphocytic leukemia. Haematologica. 2019;104(1):147–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. James DF, Werner L, Brown JR, Wierda WG, Barrientos JC, Castro JE, et al. Lenalidomide and rituximab for the initial treatment of patients with chronic lymphocytic leukemia: a multicenter clinical-translational study from the chronic lymphocytic leukemia research consortium. J Clin Oncol. 2014;32:2067–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chanan-Khan A, Egyed M, Robak T, Martinelli de Oliveira FA, Echeveste MA, Dolan S, et al. Randomized phase 3 study of lenalidomide versus chlorambucil as first-line therapy for older patients with chronic lymphocytic leukemia (the ORIGIN trial). Leukemia. 2017;31(5):1240–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chanan-Khan A, Cramer P, Demirkan F, Fraser G, Silva RS, Grosicki S, et al. Ibrutinib combined with bendamustine and rituximab compared with placebo, bendamustine, and rituximab for previously treated chronic lymphocytic leukaemia or small lymphocytic lymphoma (HELIOS): a randomised, double-blind, phase 3 study. Lancet Oncol. 2016;17(2):200–11.

    Article  CAS  PubMed  Google Scholar 

  92. Fraser G, Cramer P, Demirkan F, Silva RS, Grosicki S, Pristupa A, et al. Updated results from the phase 3 HELIOS study of ibrutinib, bendamustine, and rituximab in relapsed chronic lymphocytic leukemia/small lymphocytic lymphoma. Leukemia. 2019;33(4):969–80.

    Article  CAS  PubMed  Google Scholar 

  93. Davids MS, Brander DM, Kim HT, Tyekucheva S, Bsat J, Savell A, et al. Ibrutinib plus fludarabine, cyclophosphamide, and rituximab as initial treatment for younger patients with chronic lymphocytic leukaemia: a single-arm, multicentre, phase 2 trial. Lancet Haematol. 2019;6(8):e419–e428428.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Jain N, Keating M, Thompson P, Ferrajoli A, Burger J, Borthakur G, et al. Ibrutinib and venetoclax for first-line treatment of CLL. N Engl J Med. 2019;380(22):2095–103.

    Article  CAS  PubMed  Google Scholar 

  95. Rogers KA, Huang Y, Ruppert AS, Awan FT, Heerema NA, Hoffman C, et al. Phase 1b study of obinutuzumab, ibrutinib, and venetoclax in relapsed and refractory chronic lymphocytic leukemia. Blood. 2018;132(15):1568–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The funding has been received from Kyowa Hakko Kirin with Grant No. Grant, Chugai Pharmaceutical with Grant No. Grant, Astellas Pharma with Grant No. Grant, Eisai with Grant No. Grant, Takeda Pharmaceutical Company with Grant No. Grant, Celgene with Grant No. Grant, Chugai Pharmaceutical with Grant No. Personal Fees, Eisai with Grant No. Personal Fees, Takeda Pharmaceutical Company with Grant No. Personal Fees, Janssen Pharmaceuticals with Grant No. Personal Fees, Bristol-Myers Squibb with Grant No. Personal Fees, AbbVie with Grant No. Personal Fees, AstraZeneca with Grant No. Personal Fees, Shin-Nihon Kagaku with Grant No. Grant, Chugai Pharmaceutical with Grant No. Grant, Chugai Pharmaceutical with Grant No. Personal Fees, Kyowa Hakko Kirin with Grant No. Grant, Kyowa Hakko Kirin with Grant No. Personal Fees, Sanofi with Grant No. Grant, AstraZeneca with Grant No. Grant, AstraZeneca with Grant No. Personal Fees, AbbVie with Grant No. Personal Fees, Ono Pharmaceutical with Grant No. Grant, Ono Pharmaceutical with Grant No. Personal Fees, Eisai with Grant No. Grant, Eisai with Grant No. Personal Fees, Nippon Shinyaku with Grant No. Grant, Nippon Shinyaku with Grant No. Personal Fees, Dainippon Sumitomo Pharma with Grant No. Grant, Dainippon Sumitomo Pharma with Grant No. Personal Fees, Celgene with Grant No. Personal Fees, Mochida Pharmaceutical Company with Grant No. Grant, Mochida Pharmaceutical Company with Grant no. Personal Fees, Daiichi-Sankyo with Grant No. Grant, Daiichi-Sankyo with Grant no. Personal Fees, Takeda Pharmaceutical Company with Grant No. Grant, Takeda Pharmaceutical Company with Grant no. Personal Fees, Janssen Pharmaceuticals with Grant no. Personal Fees, MSD K.K. with Grant No. Grant, MSD K.K. with Grant no. Personal Fees, Astellas Pharma with Grant No. Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Suzumiya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzumiya, J., Takizawa, J. Evolution in the management of chronic lymphocytic leukemia in Japan: should MRD negativity be the goal?. Int J Hematol 111, 642–656 (2020). https://doi.org/10.1007/s12185-020-02867-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-020-02867-0

Keywords

Navigation