Skip to main content

Advertisement

Log in

Cutaneous localization in multiple myeloma in the context of bortezomib-based treatment: how do myeloma cells escape from the bone marrow to the skin?

  • Case Report
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The skin is a possible site of extramedullary localization in multiple myeloma (MM) patients; however, the mechanisms involved in this process are poorly understood. We describe the case of a refractory MM patient who developed a cutaneous localization under bortezomib treatment and we further expanded observations in other eight MM patients. We focused on the expression of genes involved in plasma cell skin homing, including CCR10, which was highly expressed. Moreover, we observed a lack of CXCR4 surface expression and the down-regulation of ICAM1/CD54 throughout the progression of the disease, suggesting a possible mechanism driving the escape of MM cells from the bone marrow into the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood. 2007;109:2708–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Vande Broek I, Vanderkerken K, Van Camp B, Van Riet I. Extravasation and homing mechanisms in multiple myeloma. Clin Exp Metastasis. 2008;25:325–34.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson KC. Multiple myeloma. Hematol Oncol Clin North Am. 2014;28:xi–xii.

    Article  PubMed  Google Scholar 

  4. Abe M. Targeting the interplay between myeloma cells and the bone marrow microenvironment in myeloma. Int J Hematol. 2011;94:334–43.

    Article  PubMed  Google Scholar 

  5. Blade J, Fernandez de Larrea C, Rosinol L, Cibeira MT, Jimenez R, Powles R. Soft-tissue plasmacytomas in multiple myeloma: incidence, mechanisms of extramedullary spread, and treatment approach. J Clin Oncol. 2011;29:3805–12.

    Article  PubMed  Google Scholar 

  6. Usmani SZ, Heuck C, Mitchell A, Szymonifka J, Nair B, Hoering A, et al. Extramedullary disease portends poor prognosis in multiple myeloma and is over-represented in high-risk disease even in the era of novel agents. Haematologica. 2012;97:1761–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wirk B, Wingard JR, Moreb JS. Extramedullary disease in plasma cell myeloma: the iceberg phenomenon. Bone Marrow Transpl. 2013;48:10–8.

    Article  CAS  Google Scholar 

  8. Kunkel EJ, Butcher EC. Plasma-cell homing. Nat Rev Immunol. 2003;3:822–9.

    Article  CAS  PubMed  Google Scholar 

  9. Requena L, Kutzner H, Palmedo G, Calonje E, Requena C, Perez G, et al. Cutaneous involvement in multiple myeloma: a clinicopathologic, immunohistochemical, and cytogenetic study of 8 cases. Arch Dermatol. 2003;139:475–86.

    Article  PubMed  Google Scholar 

  10. Floyd SR, Pantanowitz L, McDermott DF, Yannucci J, Driver JA, Stevenson MA, et al. Plasma cell problems: case 1. disseminated cutaneous plasmacytomas treated with total skin electron radiotherapy. J Clin Oncol. 2005;23:3138–40.

    Article  PubMed  Google Scholar 

  11. Nakayama T, Hieshima K, Izawa D, Tatsumi Y, Kanamaru A, Yoshie O. Cutting edge: profile of chemokine receptor expression on human plasma cells accounts for their efficient recruitment to target tissues. J Immunol. 2003;170:1136–40.

    Article  CAS  PubMed  Google Scholar 

  12. Durie BG, Harousseau JL, Miguel JS, Blade J, Barlogie B, Anderson K, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20:1467–73.

    Article  CAS  PubMed  Google Scholar 

  13. Calura E, Bisognin A, Manzoni M, Todoerti K, Taiana E, Sales G, et al. Disentangling the microRNA regulatory milieu in multiple myeloma: integrative genomics analysis outlines mixed miRNA-TF circuits and pathway-derived networks modulated in t(4;14) patients. Oncotarget. 2016;7:2367–78.

    PubMed  Google Scholar 

  14. Sachdev R, George TI, Schwartz EJ, Sundram UN. Discordant immunophenotypic profiles of adhesion molecules and cytokines in acute myeloid leukemia involving bone marrow and skin. Am J Clin Pathol. 2012;138:290–9.

    Article  PubMed  Google Scholar 

  15. Homey B, Alenius H, Muller A, Soto H, Bowman EP, Yuan W, et al. CCL27–CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med. 2002;8:157–65.

    Article  CAS  PubMed  Google Scholar 

  16. Fujita Y, Abe R, Sasaki M, Honda A, Furuichi M, Asano Y, et al. Presence of circulating CCR10 + T cells and elevated serum CTACK/CCL27 in the early stage of mycosis fungoides. Clin Cancer Res. 2006;12:2670–5.

    Article  CAS  PubMed  Google Scholar 

  17. Varga C, Xie W, Laubach J, Ghobrial IM, O’Donnell EK, Weinstock M, et al. Development of extramedullary myeloma in the era of novel agents: no evidence of increased risk with lenalidomide-bortezomib combinations. Br J Haematol. 2015;169:843–50.

    Article  CAS  PubMed  Google Scholar 

  18. Blade J, Fernandez de Larrea C, Rosinol L. Extramedullary disease in multiple myeloma in the era of novel agents. Br J Haematol. 2015;169:763–5.

    Article  PubMed  Google Scholar 

  19. Dahl IM, Rasmussen T, Kauric G, Husebekk A. Differential expression of CD56 and CD44 in the evolution of extramedullary myeloma. Br J Haematol. 2002;116:273–7.

    Article  CAS  PubMed  Google Scholar 

  20. Stessman HA, Mansoor A, Zhan F, Janz S, Linden MA, Baughn LB, et al. Reduced CXCR4 expression is associated with extramedullary disease in a mouse model of myeloma and predicts poor survival in multiple myeloma patients treated with bortezomib. Leukemia. 2013;27:2075–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Noborio-Hatano K, Kikuchi J, Takatoku M, Shimizu R, Wada T, Ueda M, et al. Bortezomib overcomes cell-adhesion-mediated drug resistance through downregulation of VLA-4 expression in multiple myeloma. Oncogene. 2009;28:231–42.

    Article  CAS  PubMed  Google Scholar 

  22. Chang TP, Poltoratsky V, Vancurova I. Bortezomib inhibits expression of TGF-beta1, IL-10, and CXCR4, resulting in decreased survival and migration of cutaneous T cell lymphoma cells. J Immunol. 2015;194:2942–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding was provided by Associazione Italiana per la Ricerca sul Cancro (Grant Nos. 15531, 10136), Fondazione Italiana per la Ricerca sul Cancro (Grant No. 18152) and Ministero della Salute (Grant No. E66110000230001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Giuliani.

Ethics declarations

Conflict of interest

The Authors have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1727 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchica, V., Accardi, F., Storti, P. et al. Cutaneous localization in multiple myeloma in the context of bortezomib-based treatment: how do myeloma cells escape from the bone marrow to the skin?. Int J Hematol 105, 104–108 (2017). https://doi.org/10.1007/s12185-016-2104-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-2104-1

Keywords

Navigation