Skip to main content
Log in

Functional characterization of tissue factor in von Willebrand factor-dependent thrombus formation under whole blood flow conditions

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Von Willebrand factor (VWF) plays an important role in mediating platelet adhesion and aggregation under high shear rate conditions. Such platelet aggregates are strengthened by fibrin-network formation triggered by tissue factor (TF). However, little is known about the role of TF in VWF-dependent thrombus formation under blood flow conditions. We evaluated TF in thrombus formation on immobilized VWF under whole blood flow conditions in an in vitro perfusion chamber system. Surface-immobilized TF amplified intra-thrombus fibrin generation significantly under both low and high shear flow conditions, while TF in sample blood showed no appreciable effects. Furthermore, immobilized TF enhanced VWF-dependent platelet adhesion and aggregation significantly under high shear rates. Neutrophil cathepsin G and elastase increased significantly intra-thrombus fibrin deposition on immobilized VWF–TF complex, suggesting the involvement of leukocyte inflammatory responses in VWF/TF-dependent mural thrombogenesis under these flow conditions. These results reveal a functional link between VWF and TF under whole blood flow conditions, in which surface-immobilized TF and VWF mutually contribute to mural thrombus formation, which is essential for normal hemostasis. By contrast, TF circulating in blood may be involved in systemic hypercoagulability, as seen in sepsis caused by severe microbial infection, in which neutrophil inflammatory responses may be active.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sixma JJ, Waster J. The hemostatic plug. Semin Hematol. 1977;14:265–99.

    CAS  PubMed  Google Scholar 

  2. Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008;359:938–49.

    Article  CAS  PubMed  Google Scholar 

  3. Stoll G, Kleinschnitz C, Nieswandt B. Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatment. Blood. 2008;112:3555–62.

    Article  CAS  PubMed  Google Scholar 

  4. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med. 1992;326:242–50.

    Article  CAS  PubMed  Google Scholar 

  5. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med. 1992;326:310–8.

    Article  CAS  PubMed  Google Scholar 

  6. Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL. Platelets and shear stress. Blood. 1996;88:1525–41.

    CAS  PubMed  Google Scholar 

  7. Savage B, Saldivar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell. 1996;84:289–97.

    Article  CAS  PubMed  Google Scholar 

  8. Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell. 1998;94:657–66.

    Article  CAS  PubMed  Google Scholar 

  9. Heemskerk JW, Kuijpers MJ, Munnix IC, Siljander PR. Platelet collagen receptors and coagulation. A characteristic platelet response as possible target for antithrombotic treatment. Trends Cardiovasc Med. 2005;15(3):86–92.

    Article  CAS  PubMed  Google Scholar 

  10. Fogelson AL, Tania N. Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation. Pathophysiol Haemost Thromb. 2005;34:91–108.

    Article  CAS  PubMed  Google Scholar 

  11. Hathcock JJ. Flow effects on coagulation and thrombosis. Arterioscler Thromb Vasc Biol. 2006;26:1729–37.

    Article  CAS  PubMed  Google Scholar 

  12. Mizuno T, Sugimoto M, Matsui H, Hamada M, Shida Y, Yoshioka A. Visual evaluation of blood coagulation during mural thrombogenesis under high shear flow. Thromb Res. 2008;121:855–64.

    Article  CAS  PubMed  Google Scholar 

  13. Shen F, Kastrup CJ, Liu Y, Ismagilov RF. Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate. Arterioscler Thromb Vasc Biol. 2008;28:2035–41.

    Article  CAS  PubMed  Google Scholar 

  14. Neeves KB, McCarty OJT, Reininger AJ, Sugimoto M, King MR. Flow-dependent thrombin and fibrin generation in vitro: opportunities for standardization: communication from SSC of the ISTH. J Thromb Haemost. 2014;12:418–20.

    Article  CAS  PubMed  Google Scholar 

  15. Gemmell CH, Turitto VT, Nemerson Y. Flow as a regulator of the activation of factor-X by tissue factor. Blood. 1988;72:1404–6.

    CAS  PubMed  Google Scholar 

  16. Okorie UM, Denney WS, Chatterjee MS, Neeves KB, Diamond SL. Determination of surface tissue factor thresholds that trigger coagulation at venous and arterial shear rates: amplification of 100 fM circulating tissue factor requires flow. Blood. 2008;111:3507–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morrissey JH. Tissue Factor: a key molecule in hemostatic and nonhemostatic systems. Int J Hematol. 2004;79:103–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ruggeri ZM. Von Willebrand factor, platelets and endothelial cell interactions. J Thromb Haemost. 2003;1:1335–42.

    Article  CAS  PubMed  Google Scholar 

  19. Doi M, Sugimoto M, Matsui H, Matsunari Y, Shima M. Coagulation potential of immobilized factor VIII in flow-dependent fibrin generation on platelet surfaces. Thromb Haemost. 2013;110:316–22.

    Article  CAS  PubMed  Google Scholar 

  20. Sugimoto M, Mohri H, McClintock RA, Ruggeri ZM. Identification of discontinuous von Willebrand factor sequences involved in complex formation with botrocetin. A model for the regulation of von Willebrand factor binding to platelet glycoprotein Ib. J Biol Chem. 1991;266:18172–8.

    CAS  PubMed  Google Scholar 

  21. Hamada M, Sugimoto M, Matsui H, Mizuno T, Shida Y, Doi M, et al. Antithrombotic properties of pravastatin reducing intra-thrombus fibrin deposition under high shear blood flow conditions. Thromb Haemost. 2011;105:313–20.

    Article  CAS  PubMed  Google Scholar 

  22. Kuwahara M, Sugimoto M, Tsuji S, Miyata S, Yoshioka A. Cytosolic calcium changes in a process of platelet adhesion and cohesion on a von Willebrand factor-coated surface under flow conditions. Blood. 1999;94:1149–55.

    CAS  PubMed  Google Scholar 

  23. Matsui H, Sugimoto M, Mizuno T, Tsuji S, Miyata S, Matsuda M, et al. Distinct and concerted functions of von Willebrand factor and fibrinogen in mural thrombus growth under high shear flow. Blood. 2002;100:3604–10.

    Article  CAS  PubMed  Google Scholar 

  24. Sugimoto M, Matsui H, Mizuno T, Tsuji S, Miyata S, Matsumoto M, et al. Mural thrombus generation in type 2A and 2B von Willebrand disease under flow conditions. Blood. 2003;101:915–20.

    Article  CAS  PubMed  Google Scholar 

  25. Shida Y, Nishio K, Sugimoto M, Mizuno T, Hamada M, Kato S, et al. Functional imaging of shear-dependent activity of ADAMTS13 in regulating mural thrombus growth under whole blood flow conditions. Blood. 2008;111:1295–8.

    Article  CAS  PubMed  Google Scholar 

  26. Tsuji S, Sugimoto M, Miyata S, Kuwahara M, Kinoshita S, Yoshioka A. Real-time analysis of mural thrombus formation in various platelet aggregation disorders: distinct shear-dependent roles of platelet receptors and adhesive proteins under flow. Blood. 1999;94:968–75.

    CAS  PubMed  Google Scholar 

  27. Sadler JE. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998;67:395–424.

    Article  CAS  PubMed  Google Scholar 

  28. Sugimoto M, Miyata S. Functional property under flowing blood. Int J Hematol. 2002;75:19–24.

    Article  CAS  PubMed  Google Scholar 

  29. Denis C, Lenting PJ. von Willebrand factor: at the crossroads of bleeding and thrombosis. Int J Hematol. 2012;95:353–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giessen PLA, Rauch U, Bohmann B, Kling D, Roqué M, Fallon JT, et al. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci USA. 1999;96:2311–5.

    Article  Google Scholar 

  31. Balasubramanian V, Vele O, Nemerson Y. Local shear conditions and platelet aggregates regulate the incorporation and activity of circulating tissue factor in ex vivo thrombi. Thromb Haemost. 2002;88:822–6.

    PubMed  Google Scholar 

  32. Ramacciotti E, Hawley AE, Farris DM, Ballard NE, Wrobleski SK, Myers DD Jr, et al. Leukocyte- and platelet-derived microparticles correlate with thrombus weight and tissue factor activity in an experimental mouse model of venous thrombosis. Thromb Haemost. 2009;101:748–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ikezoe T. Pathogenesis of disseminated intravascular coagulation in patients with acute promyelocytic leukemia, and its treatment using recombinant human soluble thrombomodulin. Int J Hematol. 2014;100:27–37.

    Article  CAS  PubMed  Google Scholar 

  34. Orvim U, Roald HE, Stephens RW, Roos N, Sakariassen KS. Tissue factor-induced coagulation triggers platelet thrombus formation as efficiently as fibrillar collagen at arterial blood flow conditions. Arterioscler Thromb Vasc Biol. 1994;14:1976–83.

    Article  CAS  Google Scholar 

  35. De Marco L, Mazzucato M, Masotti A, Ruggeri ZM. Localization and characterization of an alpha-thrombin-binding site on platelet glycoprotein Ib alpha. J Biol Chem. 1994;269:6478–84.

    PubMed  Google Scholar 

  36. Kahn ML. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest. 1999;6:879–87.

    Article  Google Scholar 

  37. Monroe DM, Hoffman M, Roberts HR. Platelets and thrombin generation. Arterioscler Thromb Vasc Biol. 2002;22:1381–9.

    Article  CAS  PubMed  Google Scholar 

  38. Falati S, Liu Q, Gross P, Merrill-Skoloff G, Chou J, Vandendries E, et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med. 2003;197:1585–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Steppich BA, Seitz I, Busch G, Stein A, Ott I. Modulation of tissue factor and tissue factor pathway inhibitor-1 by neutrophil proteases. Thromb Haemost. 2008;100:1068–75.

    CAS  PubMed  Google Scholar 

  40. Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16:887–96.

    Article  CAS  PubMed  Google Scholar 

  41. Goel MS, Diamond SL. Neutrophil cathepsin G promotes prothrombinase and fibrin formation under flow conditions by activating fibrinogen-adherent platelets. J Biol Chem. 2003;278:9458–63.

    Article  CAS  PubMed  Google Scholar 

  42. Doi M, Matsui H, Takeda H, Saito Y, Takeda M, Matsunari Y, et al. ADAMTS13 safeguards the myocardium in a mouse model of myocardial infarction. Thromb Haemost. 2012;108:1236–8.

    Article  PubMed  Google Scholar 

  43. De Meyer SF, Savchenco AS, Haas MS, Schatzberg D, Carroll MC, Schiviz A, et al. Protective anti-inflammatory effect of ADAMTS13 on myocardial ischemia/reperfusion injury in mice. Blood. 2012;120:5217–23.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kasuda S, Matsui H, Ono S, Matsunari Y, Nishio K, Shima M, et al. Relevant role of von Willebrand factor in neutrophil recruitment in a mouse sepsis model involving cecal ligation and puncture. Haematologica. 2016;101:e52–4.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chauhan AK, Kisucka J, Brill A, Walsh MT, Scheiflinger F, Wagner DD. ADAMTS13: a new link between thrombosis and inflammation. J Exp Med. 2008;205:2065–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Delvaeye M, Conway EM. Coagulation and innate immune responses: can we view them separately? Blood. 2009;114:2367–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by the grant (No. 19591129) from the Ministry of Education, Culture, Sports, Science and Technology of Japan to M. Sugimoto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiko Sugimoto.

Ethics declarations

Conflict of interest

Mitsuhiko Sugimoto, Masaaki Doi, and Hideto Matsui belong to the Department of Regulatory medicine for Thrombosis, Nara Medical University, which was endowed by the Bayer Pharmaceutical Company, Japan. Other authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsunari, Y., Sugimoto, M., Doi, M. et al. Functional characterization of tissue factor in von Willebrand factor-dependent thrombus formation under whole blood flow conditions. Int J Hematol 104, 661–668 (2016). https://doi.org/10.1007/s12185-016-2086-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-2086-z

Keywords

Navigation