Skip to main content
Log in

Inhibition of human primary megakaryocyte differentiation by anagrelide: a gene expression profiling analysis

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Anagrelide is a treatment option for patients with essential thrombocythemia. Although the clinical efficacy of anagrelide has been established, there is limited knowledge of the molecular mechanism underlying its effect. Here, we evaluated the effect of anagrelide on primary megakaryocytic progenitors from cord blood-derived CD34-positive cells. Anagrelide treatment reduced the expression of megakaryocytic markers (CD41 and CD61). Microarray analysis was performed to characterize gene profiles altered by exposure to anagrelide. The analysis demonstrated upregulation and downregulation (>2-fold) of eight and 34 genes, respectively, in anagrelide-treated megakaryocyte progenitors. This included genes encoding prototypical megakaryocytic proteins, such as PPBP, PF4, and GP6. Gene ontology analysis of genes suppressed by anagrelide treatment revealed significant enrichment of genes involved in platelet activation and degranulation. Expression levels of transcription factors involved in megakaryocyte commitment/differentiation were further evaluated by quantitative RT-PCR, demonstrating significant downregulation of FLI1 and TAL1 in anagrelide-treated megakaryocyte progenitors. Knockdown of TAL1 in primary megakaryocyte progenitors confirmed significant downregulation of FLI1 and megakaryocytic genes. Anagrelide had no significant effect on the surface expression of erythroid markers or on the expression of transcription factors involved in erythroid commitment/differentiation. In conclusion, anagrelide suppresses megakaryocytic differentiation, partly through decreasing the expression of megakaryocytic transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Passamonti F, Rumi E, Arcaini L, Boveri E, Elena C, Pietra D, et al. Prognostic factors for thrombosis, myelofibrosis, and leukemia in essential thrombocythemia: a study of 605 patients. Haematologica. 2008;93:1645–51.

    Article  PubMed  Google Scholar 

  2. Palandri F, Catani L, Testoni N, Ottaviani E, Polverelli N, Fiacchini M, et al. Long-term follow-up of 386 consecutive patients with essential thrombocythemia: safety of cytoreductive therapy. Am J Hematol. 2009;84:215–20.

    Article  PubMed  Google Scholar 

  3. Harrison CN, Campbell PJ, Buck G, Wheatley K, East CL, Bareford D, et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med. 2005;353:33–45.

    Article  CAS  PubMed  Google Scholar 

  4. Gisslinger H, Gotic M, Holowiecki J, Penka M, Thiele J, Kvasnicka HM, et al. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood. 2013;121:1720–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fleming JS, Buyniski JP. A potent new inhibitor of platelet aggregation and experimental thrombosis, anagrelide (BL-4162A). Thromb Res. 1979;15:373–88.

    Article  CAS  PubMed  Google Scholar 

  6. Mazur EM, Rosmarin AG, Sohl PA, Newton JL, Narendran A. Analysis of the mechanism of anagrelide-induced thrombocytopenia in humans. Blood. 1992;79:1931–7.

    CAS  PubMed  Google Scholar 

  7. Solberg LA Jr, Tefferi A, Oles KJ, Tarach JS, Petitt RM, Forstrom LA, et al. The effects of anagrelide on human megakaryocytopoiesis. Br J Haematol. 1997;99:174–80.

    Article  CAS  PubMed  Google Scholar 

  8. Tomer A. Effects of anagrelide on in vivo megakaryocyte proliferation and maturation in essential thrombocythemia. Blood. 2002;99:1602–9.

    Article  CAS  PubMed  Google Scholar 

  9. McCarty JM, Melone PD, Simanis JP, Kanamori D, Dessypris EN, Warshamana-Greene GS. A preliminary investigation into the action of anagrelide: thrombopoietin-c-Mpl receptor interactions. Exp Hematol. 2006;34:87–96.

    Article  CAS  PubMed  Google Scholar 

  10. Lane WJ, Hattori K, Dias S, Peerschke EI, Moore MA, Blanset DL, et al. Anagrelide metabolite induces thrombocytopenia in mice by inhibiting megakaryocyte maturation without inducing platelet aggregation. Exp Hematol. 2001;29:1417–24.

    Article  CAS  PubMed  Google Scholar 

  11. Ahluwalia M, Donovan H, Singh N, Butcher L, Erusalimsky JD. Anagrelide represses GATA-1 and FOG-1 expression without interfering with thrombopoietin receptor signal transduction. J Thromb Haemost. 2010;8:2252–61.

    Article  CAS  PubMed  Google Scholar 

  12. Ahluwalia M, Butcher L, Donovan H, Killick-Cole C, Jones PM, Erusalimsky JD. The gene expression signature of anagrelide provides an insight into its mechanism of action and uncovers new regulators of megakaryopoiesis. J Thromb Haemost. 2015;13:1103–12.

    Article  CAS  PubMed  Google Scholar 

  13. Fujiwara T, Alqadi YW, Okitsu Y, Fukuhara N, Onishi Y, Ishizawa K, et al. Role of transcriptional corepressor ETO2 in erythroid cells. Exp Hematol. 2013;41:303–15.

    Article  CAS  PubMed  Google Scholar 

  14. Fujiwara T, Saitoh H, Inoue A, Kobayashi M, Okitsu Y, Katsuoka Y, et al. 3-Deazaneplanocin A (DZNep), an inhibitor of S-adenosylmethionine-dependent methyltransferase, promotes erythroid differentiation. J Biol Chem. 2014;289:8121–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shaw PH, Gilligan D, Wang XM, Thall PF, Corey SJ. Ex vivo expansion of megakaryocyte precursors from umbilical cord blood CD34 cells in a closed liquid culture system. Biol Blood Marrow Transpl. 2003;9:151–6.

    Article  CAS  Google Scholar 

  16. Crispino JD, Weiss MJ. Erythro-megakaryocytic transcription factors associated with hereditary anemia. Blood. 2014;123:3080–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gewirtz AM, Zhang J, Ratajczak J, Ratajczak M, Park KS, Li C, et al. Chemokine regulation of human megakaryocytopoiesis. Blood. 1995;86:2559–67.

    CAS  PubMed  Google Scholar 

  18. Stevenson WS, Rabbolini DJ, Beutler L, Chen Q, Gabrielli S, Mackay JP, et al. Paris-Trousseau thrombocytopenia is phenocopied by the autosomal recessive inheritance of a DNA-binding domain mutation in FLI1. Blood. 2015;126:2027–30.

    Article  CAS  PubMed  Google Scholar 

  19. Joo JH, Ueda E, Bortner CD, Yang XP, Liao G, Jetten AM. Farnesol activates the intrinsic pathway of apoptosis and the ATF4-ATF3-CHOP cascade of ER stress in human T lymphoblastic leukemia Molt4 cells. Biochem Pharmacol. 2015;97:256–68.

    Article  CAS  PubMed  Google Scholar 

  20. Luís A, Martins JD, Silva A, Ferreira I, Cruz MT, Neves BM. Oxidative stress-dependent activation of the eIF2α–ATF4 unfolded protein response branch by skin sensitizer 1-fluoro-2,4-dinitrobenzene modulates dendritic-like cell maturation and inflammatory status in a biphasic manner [corrected]. Free Radic Biol Med. 2014;77:217–29.

    Article  PubMed  Google Scholar 

  21. Roy L, Bikorimana E, Lapid D, Choi H, Nguyen T, Dahl R. MiR-24 is required for hematopoietic differentiation of mouse embryonic stem cells. PLoS Genet. 2015;11:e1004959.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chan MC, Hilyard AC, Wu C, Davis BN, Hill NS, Lal A, et al. Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. EMBO J. 2010;29:559–73.

    Article  CAS  PubMed  Google Scholar 

  23. Porcher C, Swat W, Rockwell K, Fujiwara Y, Alt FW, Orkin SH. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell. 1996;86:47–57.

    Article  CAS  PubMed  Google Scholar 

  24. Chan MC, Nguyen PH, Davis BN, Ohoka N, Hayashi H, Du K, et al. A novel regulatory mechanism of the bone morphogenetic protein (BMP) signaling pathway involving the carboxyl-terminal tail domain of BMP type II receptor. Mol Cell Biol. 2007;27:5776–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tao S, Cai Y, Sampath K. The Integrator subunits function in hematopoiesis by modulating Smad/BMP signaling. Development. 2009;136:2757–65.

    Article  CAS  PubMed  Google Scholar 

  26. Watson DK, Smyth FE, Thompson DM, Cheng JQ, Testa JR, Papas TS, et al. The ERGB/Fli-1 gene: isolation and characterization of a new member of the family of human ETS transcription factors. Cell Growth Differ. 1992;3:705–13.

    CAS  PubMed  Google Scholar 

  27. Seth A, Robinson L, Thompson DM, Watson DK, Papas TS. Transactivation of GATA-1 promoter with ETS1, ETS2 and ERGB/Hu-FLI-1 proteins: stabilization of the ETS1 protein binding on GATA-1 promoter sequences by monoclonal antibody. Oncogene. 1993;8:1783–90.

    CAS  PubMed  Google Scholar 

  28. Songdej N, Rao AK. Hematopoietic transcription factor mutations and inherited platelet dysfunction. F1000prime Rep. 2015;7:66.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kawada H, Ito T, Pharr PN, Spyropoulos DD, Watson DK, Ogawa M. Defective megakaryopoiesis and abnormal erythroid development in Fli-1 gene-targeted mice. Int J Hematol. 2001;73:463–8.

    Article  CAS  PubMed  Google Scholar 

  30. Hart A, Melet F, Grossfeld P, Chien K, Jones C, Tunnacliffe A, et al. Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity. 2000;13:167–77.

    Article  CAS  PubMed  Google Scholar 

  31. Fujiwara T, O’Geen H, Keles S, Blahnik K, Linnemann AK, Kang YA, et al. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol Cell. 2009;36:667–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilson NK, Foster SD, Wang X, Knezevic K, Schütte J, Kaimakis P, et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell. 2010;7:532–44.

    Article  CAS  PubMed  Google Scholar 

  33. Tijssen MR, Cvejic A, Joshi A, Hannah RL, Ferreira R, Forrai A, et al. Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators. Dev Cell. 2011;20:597–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moriguchi T, Yamamoto M. A regulatory network governing Gata1 and Gata2 gene transcription orchestrates erythroid lineage differentiation. Int J Hematol. 2014;100:417–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hozumi Motohashi (Tohoku University) for the helpful advice. We acknowledge the members of the Biomedical Research Core of Tohoku University School of Medicine for their support. We also thank Ms. Megumi Katoh (Tohoku University) for the excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Harigae.

Ethics declarations

Conflict of interest

Drs. Fujiwara and Harigae received a research grant from Chugai Pharmaceutical Co., Ltd. Other authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 7363 kb)

Supplementary material 2 (EPS 969 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakurai, K., Fujiwara, T., Hasegawa, S. et al. Inhibition of human primary megakaryocyte differentiation by anagrelide: a gene expression profiling analysis. Int J Hematol 104, 190–199 (2016). https://doi.org/10.1007/s12185-016-2006-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-2006-2

Keywords

Navigation