Skip to main content

Advertisement

Log in

Effects of indoleamine 2,3-dioxygenase inhibitor in non-Hodgkin lymphoma model mice

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Indoleamine 2,3-dioxygenase (IDO) catalyzes the rate-limiting step in the metabolism of tryptophan along the kynurenine pathway. In tumors, increased IDO activity inhibits proliferation and induces apoptosis of T cells and natural killer cells. We investigated the therapeutic potential of IDO inhibitor 1-methyl-d-tryptophan (d-1MT) with cyclophosphamide (CY) in a mouse model of lymphoma. To examine the effect of d-1MT, mice were killed on day 28. Serum concentrations of l-kynurenine and l-tryptophan were measured by high-performance liquid chromatography. Regulatory T cells (Tregs) were counted by flow cytometry, and mRNA expressions of IDO1, Foxp3, IFN-γ, and COX-2 were examined by quantitative real-time reverse transcription-polymerase chain reaction. d-1MT+CY combination treatment significantly inhibited tumor growth as compared to either treatment alone. There were no significant differences in the serum l-kynurenine/l-tryptophan ratio or the IDO1 expression level in the tumors among the treatment groups. The expression levels of IFN-γ and COX-2 mRNA in tumor-draining lymph nodes (TDLNs) were found to be significantly up-regulated in the CY and d-1MT+CY groups. The number of Tregs in TDLNs in the d-1MT+CY group was significantly lower than that in CY groups on day 17. These results suggest that d-1MT in combination with CY is an effective treatment for lymphoma in a mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Whiteside TL. Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol. 2006;16:3–15.

    Article  CAS  PubMed  Google Scholar 

  2. Gajewski TF. Identifying and overcoming immune resistance mechanisms in the melanoma tumor microenvironment. Clin Cancer Res Off J Am Assoc For Cancer Res. 2006;12:2326s–30s.

    Article  CAS  Google Scholar 

  3. Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest. 2007;117:1147–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Takikawa O. Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated l-tryptophan metabolism. Biochem Biophys Res Commun. 2005;338:12–9.

    Article  CAS  PubMed  Google Scholar 

  5. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 2002;196:459–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189:1363–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Yoshikawa T, Hara T, Tsurumi H, Goto N, Hoshi M, Kitagawa J, et al. Serum concentration of l-kynurenine predicts the clinical outcome of patients with diffuse large B-cell lymphoma treated with R-CHOP. Eur J Haematol. 2010;84:304–9.

    Article  CAS  PubMed  Google Scholar 

  8. Ninomiya S, Hara T, Tsurumi H, Hoshi M, Kanemura N, Goto N, et al. Indoleamine 2,3-dioxygenase in tumor tissue indicates prognosis in patients with diffuse large B-cell lymphoma treated with R-CHOP. Ann Hematol. 2011;90:409–16.

    Article  CAS  PubMed  Google Scholar 

  9. Ninomiya S, Hara T, Tsurumi H, Goto N, Saito K, Seishima M, et al. Indoleamine 2,3-dioxygenase expression and serum kynurenine concentrations in patients with diffuse large B-cell lymphoma. Leuk Lymphoma. 2012;53:1143–5.

    Article  CAS  PubMed  Google Scholar 

  10. Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med. 2005;11:312–9.

    Article  CAS  PubMed  Google Scholar 

  11. Yoshida N, Ino K, Ishida Y, Kajiyama H, Yamamoto E, Shibata K, et al. Overexpression of indoleamine 2,3-dioxygenase in human endometrial carcinoma cells induces rapid tumor growth in a mouse xenograft model. Clin Cancer Res Off J Am Assoc For Cancer Res. 2008;14:7251–9.

    Article  CAS  Google Scholar 

  12. Inaba T, Ino K, Kajiyama H, Yamamoto E, Shibata K, Nawa A, et al. Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma. Gynecol Oncol. 2009;115:185–92.

    Article  CAS  PubMed  Google Scholar 

  13. Hou DY, Muller AJ, Sharma MD, DuHadaway J, Banerjee T, Johnson M, et al. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res. 2007;67:792–801.

    Article  CAS  PubMed  Google Scholar 

  14. Kim KJ, Kanellopoulos-Langevin C, Merwin RM, Sachs DH, Asofsky R. Establishment and characterization of BALB/c lymphoma lines with B cell properties. J Immunol. 1979;122:549–54.

    CAS  PubMed  Google Scholar 

  15. Fujigaki S, Saito K, Takemura M, Fujii H, Wada H, Noma A, et al. Species differences in l-tryptophan-kynurenine pathway metabolism: quantification of anthranilic acid and its related enzymes. Arch Biochem Biophys. 1998;358:329–35.

    Article  CAS  PubMed  Google Scholar 

  16. Hoshi M, Saito K, Hara A, Taguchi A, Ohtaki H, Tanaka R, et al. The absence of IDO upregulates type I IFN production, resulting in suppression of viral replication in the retrovirus-infected mouse. J Immunol. 2010;185:3305–12.

    Article  CAS  PubMed  Google Scholar 

  17. Katz JB, Muller AJ, Prendergast GC. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol Rev. 2008;222:206–21.

    Article  CAS  PubMed  Google Scholar 

  18. Tas SW, Vervoordeldonk MJ, Hajji N, Schuitemaker JH, van der Sluijs KF, May MJ, et al. Noncanonical NF-kappaB signaling in dendritic cells is required for indoleamine 2,3-dioxygenase (IDO) induction and immune regulation. Blood. 2007;110:1540–9.

    Article  CAS  PubMed  Google Scholar 

  19. Sehn LH, Donaldson J, Chhanabhai M, Fitzgerald C, Gill K, Klasa R, et al. Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia. J Clin Oncol Official J Am Soc Clin Oncol. 2005;23:5027–33.

    Article  CAS  Google Scholar 

  20. Bocchia M, Defina M, Aprile L, Sicuranza A. Peptide vaccines for hematological malignancies: a missed promise? Int J Hematol. 2014;99:107–16.

    Article  CAS  PubMed  Google Scholar 

  21. Fujiwara H. Adoptive T-cell therapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors. Int J Hematol. 2014;99:123–31.

    Article  CAS  PubMed  Google Scholar 

  22. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9:1269–74.

    Article  CAS  PubMed  Google Scholar 

  23. Godin-Ethier J, Hanafi LA, Piccirillo CA, Lapointe R. Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17:6985–91.

    Article  CAS  Google Scholar 

  24. Lake RA, Robinson BW. Immunotherapy and chemotherapy–a practical partnership. Nat Rev Cancer. 2005;5:397–405.

    Article  CAS  PubMed  Google Scholar 

  25. Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol. 2005;26:111–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, et al. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol. 2004;34:336–44.

    Article  CAS  PubMed  Google Scholar 

  27. Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H. Inhibition of CD4(+)25+T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood. 2005;105:2862–8.

    Article  CAS  PubMed  Google Scholar 

  28. Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA, et al. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest. 2002;110:185–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Munn DH, Mellor AL. The tumor-draining lymph node as an immune-privileged site. Immunol Rev. 2006;213:146–58.

    Article  PubMed  Google Scholar 

  30. Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest. 2004;114:280–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005;22:633–42.

    Article  CAS  PubMed  Google Scholar 

  32. Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res An Off J Am Assoc Cancer Res. 2003;9:4404–8.

    Google Scholar 

  33. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 2005;65:2457–64.

    Article  CAS  PubMed  Google Scholar 

  34. Quezada SA, Peggs KS, Simpson TR, Allison JP. Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol Rev. 2011;241:104–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+regulatory T cells. Nat Immunol. 2003;4:330–6.

    Article  CAS  PubMed  Google Scholar 

  36. North RJ. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med. 1982;155:1063–74.

    Article  CAS  PubMed  Google Scholar 

  37. Colombo MP, Piconese S. Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat Rev Cancer. 2007;7:880–7.

    Article  CAS  PubMed  Google Scholar 

  38. Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 2003;4:1206–12.

    Article  CAS  PubMed  Google Scholar 

  39. Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A, Ferri E, et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25+T regulatory cells. Blood. 2007;109:2871–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Chiyoko Sano and Ms. Kanako Yamaoka for their valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Tsurumi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, N., Hara, T., Shimizu, M. et al. Effects of indoleamine 2,3-dioxygenase inhibitor in non-Hodgkin lymphoma model mice. Int J Hematol 102, 327–334 (2015). https://doi.org/10.1007/s12185-015-1835-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-015-1835-8

Keywords

Navigation