Skip to main content

Advertisement

Log in

Bone geometry, bone mineral density, and micro-architecture in patients with myelofibrosis: a cross-sectional study using DXA, HR-pQCT, and bone turnover markers

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

An Erratum to this article was published on 13 August 2015

Abstract

Primary myelofibrosis (MF) is a severe chronic myeloproliferative neoplasm, progressing towards a terminal stage with insufficient haematopoiesis and osteosclerotic manifestations. Whilst densitometry studies have showed MF patients to have elevated bone mineral density, data on bone geometry and micro-structure assessed with non-invasive methods are lacking. We measured areal bone mineral density (aBMD) using dual-energy X-ray absorptiometry (DXA). Bone geometry, volumetric BMD, and micro-architecture were measured using high-resolution peripheral quantitative computed tomography (HR-pQCT). We compared the structural parameters of bones by comparing 18 patients with MF and healthy controls matched for age, sex, and height. Blood was analysed for biochemical markers of bone turnover in patients with MF. There were no significant differences in measurements of bone geometry, volumetric bone mineral density, and micro-structure between MF patients and matched controls. Estimated bone stiffness and bone strength were similar between MF patients and controls. The level of pro-collagen type 1 N-terminal pro-peptide (P1NP) was significantly increased in MF, which may indicate extensive collagen synthesis, one of the major diagnostic criteria in MF. We conclude that bone mineral density, geometry, and micro-architecture in this cohort of MF patients are comparable with those in healthy individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Enisa Shevroja, Jean-Yves Reginster, … Nicholas C. Harvey

References

  1. Swerdlow SHCE, Harris NL et al. WHO classification of tumours of the haematopoietic and lymphoid tissues. France: IARC; 2008.

  2. Thiele J, Kvasnicka HM. The 2008 WHO diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Current Hematol Malig Rep. 2009;4(1):33–40.

    Article  Google Scholar 

  3. Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951;6(4):372–5.

    CAS  PubMed  Google Scholar 

  4. Scherber R, Dueck AC, Johansson P, Barbui T, Barosi G, Vannucchi AM, et al. The myeloproliferative neoplasm symptom assessment form (MPN-SAF): international prospective validation and reliability trial in 402 patients. Blood. 2011;118(2):401–8.

    Article  CAS  PubMed  Google Scholar 

  5. Mesa RA, Niblack J, Wadleigh M, Verstovsek S, Camoriano J, Barnes S, et al. The burden of fatigue and quality of life in myeloproliferative disorders (MPDs): an international Internet-based survey of 1179 MPD patients. Cancer. 2007;109(1):68–76.

    Article  PubMed  Google Scholar 

  6. Tefferi A. Myelofibrosis with myeloid metaplasia. New Engl J Med. 2000;342(17):1255–65.

    Article  CAS  PubMed  Google Scholar 

  7. Mellibovsky L, Marinoso ML, Cervantes F, Besses C, Nacher M, Nogues X, et al. Relationship among densitometry, bone histomorphometry, and histologic stage in idiopathic myelofibrosis. Bone. 2004;34(2):330–5.

    Article  CAS  PubMed  Google Scholar 

  8. Diamond T, Smith A, Schnier R, Manoharan A. Syndrome of myelofibrosis and osteosclerosis: a series of case reports and review of the literature. Bone. 2002;30(3):498–501.

    Article  CAS  PubMed  Google Scholar 

  9. Poulsen LW, Melsen F, Bendix K. A histomorphometric study of haematological disorders with respect to marrow fibrosis and osteosclerosis. APMIS Acta Pathologica, Microbiologica, et Immunologica Scandinavica. 1998;106(4):495–9.

    Article  CAS  PubMed  Google Scholar 

  10. Guermazi A, de Kerviler E, Cazals-Hatem D, Zagdanski AM, Frija J. Imaging findings in patients with myelofibrosis. Eur Radiol. 1999;9(7):1366–75.

    Article  CAS  PubMed  Google Scholar 

  11. Farmer S, Horvath-Puho E, Vestergaard H, Hermann AP, Frederiksen H. Chronic myeloproliferative neoplasms and risk of osteoporotic fractures; a nationwide population-based cohort study. Br J Haematol. 2013;163(5):603–10.

    Article  PubMed  Google Scholar 

  12. Consensus development conference. diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med. 1993;94(6):646–50.

    Article  Google Scholar 

  13. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, et al. BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Miner Res Off J Am Soc Bone Miner Res. 2003;18(11):1947–54.

    Article  Google Scholar 

  15. Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34(1):195–202.

    Article  CAS  PubMed  Google Scholar 

  16. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005;90(12):6508–15.

    Article  CAS  PubMed  Google Scholar 

  17. Vasikaran S, Eastell R, Bruyere O, Foldes AJ, Garnero P, Griesmacher A, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22(2):391–420 (A Journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA).

    Article  CAS  PubMed  Google Scholar 

  18. Campbell PJ, Green AR. The myeloproliferative disorders. New Engl J Med. 2006;355(23):2452–66.

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt M, Pedersen L, Sorensen HT. The danish civil registration system as a tool in epidemiology. Eur J Epidemiol. 2014;29(8):541–9.

    Article  PubMed  Google Scholar 

  20. Hansen S, Shanbhogue V, Folkestad L, Nielsen MM, Brixen K. Bone microarchitecture and estimated strength in 499 adult danish women and men: a cross-sectional population-based high-resolution peripheral quantitative computed tomographic study on peak bone structure. Calcified tissue international. 2013;94:269.

    Article  PubMed  Google Scholar 

  21. Levine RL, Pardanani A, Tefferi A, Gilliland DG. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nature Rev Cancer. 2007;7(9):673–83.

    Article  CAS  Google Scholar 

  22. Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S, et al. DIPSS plus: a refined dynamic international prognostic scoring system for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(4):392–7.

    Article  Google Scholar 

  23. Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E, Pereira A, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115(9):1703–8.

    Article  CAS  PubMed  Google Scholar 

  24. Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S. Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res Off J Am Soc Bone Miner Res. 2010;25(5):983–93.

    Google Scholar 

  25. Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK. Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res Off J Am Soc Bone Miner Res. 2010;25(4):882–90.

    Google Scholar 

  26. Pistoia W, van Rietbergen B, Lochmuller EM, Lill CA, Eckstein F, Ruegsegger P. Image-based micro-finite-element modeling for improved distal radius strength diagnosis: moving from bench to bedside. J Clin Densitom Off J Int Soc Clin Densitom. 2004;7(2):153–60.

    Article  CAS  Google Scholar 

  27. Macneil JA, Boyd SK. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone. 2008;42(6):1203–13.

    Article  PubMed  Google Scholar 

  28. Pialat JB, Burghardt AJ, Sode M, Link TM, Majumdar S. Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture. Bone. 2012;50(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  29. Hansen S, Hauge EM, Beck Jensen JE, Brixen K. Differing effects of PTH 1-34, PTH 1-84, and zoledronic acid on bone microarchitecture and estimated strength in postmenopausal women with osteoporosis: an 18-month open-labeled observational study using HR-pQCT. J Bone Miner Res Off J Am Soc Bone Miner Res. 2013;28(4):736–45.

    Article  CAS  Google Scholar 

  30. Orum O, Hansen M, Jensen CH, Sorensen HA, Jensen LB, Horslev-Petersen K, et al. Procollagen type I N-terminal propeptide (PINP) as an indicator of type I collagen metabolism: ELISA development, reference interval, and hypovitaminosis D induced hyperparathyroidism. Bone. 1996;19(2):157–63.

    Article  CAS  PubMed  Google Scholar 

  31. Seung H, Medige J, Ziv I. Combined models of ultrasound velocity and attenuation for predicting trabecular bone strength and mineral density. Clin Biomech. 1996;11(6):348–53.

    Article  Google Scholar 

  32. Merry GM, Aronowitz PB. Myelofibrosis with massive hepatosplenomegaly and osteolytic bone lesions. J Hosp Med Off Publ Soc Hosp Med. 2010;5(3):E27–8.

    Article  Google Scholar 

  33. Assous N, Foltz V, Fautrel B, Rozenberg S, Etchepare F, Bourgeois P. Bone involvement in myelofibrosis: effectiveness of bisphosphonates. Joint Bone Spine Revue du Rhumatisme. 2005;72(6):591–2.

    Article  Google Scholar 

  34. Blake GM, Fogelman I. An update on dual-energy X-ray absorptiometry. Semin Nucl Med. 2010;40(1):62–73.

    Article  PubMed  Google Scholar 

  35. Gregson CL, Steel SA, O’Rourke KP, Allan K, Ayuk J, Bhalla A, et al. Sink or swim: an evaluation of the clinical characteristics of individuals with high bone mass. Osteoporos Int. 2012;23(2):643–54 (A Journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Gregson CL, Hardcastle SA, Cooper C, Tobias JH. Friend or foe: high bone mineral density on routine bone density scanning, a review of causes and management. Rheumatology. 2013;52(6):968–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Guggenbuhl P, Grosbois B, Chales G. Gaucher disease. Joint Bone Spine Revue du Rhumatisme. 2008;75(2):116–24.

    Article  CAS  Google Scholar 

  38. Rossini M, Zanotti R, Bonadonna P, Artuso A, Caruso B, Schena D, et al. Bone mineral density, bone turnover markers and fractures in patients with indolent systemic mastocytosis. Bone. 2011;49(4):880–5.

    Article  PubMed  Google Scholar 

  39. Johansson C, Roupe G, Lindstedt G, Mellstrom D. Bone density, bone markers and bone radiological features in mastocytosis. Age Ageing. 1996;25(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  40. Barete S, Assous N, de Gennes C, Grandpeix C, Feger F, Palmerini F, et al. Systemic mastocytosis and bone involvement in a cohort of 75 patients. Annals Rheum Dis. 2010;69(10):1838–41.

    Article  CAS  Google Scholar 

  41. van der Veer E, van der Goot W, de Monchy JG, Kluin-Nelemans HC, van Doormaal JJ. High prevalence of fractures and osteoporosis in patients with indolent systemic mastocytosis. Allergy. 2012;67(3):431–8.

    Article  PubMed  Google Scholar 

  42. Theoharides TC, Boucher W, Spear K. Serum interleukin-6 reflects disease severity and osteoporosis in mastocytosis patients. Int Arch Allergy Immunol. 2002;128(4):344–50.

    Article  CAS  PubMed  Google Scholar 

  43. Hasselbalch HC. Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer. Blood. 2012;119(14):3219–25.

    Article  CAS  PubMed  Google Scholar 

  44. Panteli KE, Hatzimichael EC, Bouranta PK, Katsaraki A, Seferiadis K, Stebbing J, et al. Serum interleukin (IL)-1, IL-2, sIL-2Ra, IL-6 and thrombopoietin levels in patients with chronic myeloproliferative diseases. Br J Haematol. 2005;130(5):709–15.

    Article  CAS  PubMed  Google Scholar 

  45. Pardanani A. Systemic mastocytosis in adults: 2011 update on diagnosis, risk stratification, and management. Am J Hematol. 2011;86(4):362–71.

    Article  CAS  PubMed  Google Scholar 

  46. Vasikaran S, Cooper C, Eastell R, Griesmacher A, Morris HA, Trenti T, et al. International osteoporosis foundation and international federation of clinical chemistry and laboratory medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med CCLM/FESCC. 2011;49(8):1271–4.

    CAS  Google Scholar 

  47. Barosi G, Costa A, Liberato LN, Polino G, Spriano P, Magrini U. Serum procollagen-III-peptide level correlates with disease activity in myelofibrosis with myeloid metaplasia. Br J Haematol. 1989;72(1):16–20.

    Article  CAS  PubMed  Google Scholar 

  48. Jensen MK, Riisbro R, Holten-Andersen MN, Brown Pde N, Junker P, Brunner N, et al. Collagen metabolism and enzymes of the urokinase plasminogen activator system in chronic myeloproliferative disorders: correlation between plasma-soluble urokinase plasminogen activator receptor and serum markers for collagen metabolism. Eur J Haematol. 2003;71(4):276–82.

    Article  CAS  PubMed  Google Scholar 

  49. Kuter DJ, Bain B, Mufti G, Bagg A, Hasserjian RP. Bone marrow fibrosis: pathophysiology and clinical significance of increased bone marrow stromal fibres. Br J Haematol. 2007;139(3):351–62.

    Article  CAS  PubMed  Google Scholar 

  50. Barbui T, Thiele J, Vannucchi AM, Tefferi A. Problems and pitfalls regarding WHO-defined diagnosis of early/prefibrotic primary myelofibrosis versus essential thrombocythemia. Leukemia. 2013;27(10):1953–8.

    Article  CAS  PubMed  Google Scholar 

  51. Liu XS, Cohen A, Shane E, Yin PT, Stein EM, Rogers H, et al. Bone density, geometry, microstructure, and stiffness: relationships between peripheral and central skeletal sites assessed by DXA, HR-pQCT, and cQCT in premenopausal women. J Bone Miner Res Off J Am Soc Bone Miner Res. 2010;25(10):2229–38.

    Article  Google Scholar 

  52. Boutroy S, Van Rietbergen B, Sornay-Rendu E, Munoz F, Bouxsein ML, Delmas PD. Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res Off J Am Soc Bone Miner Res. 2008;23(3):392–9.

    Article  Google Scholar 

  53. Moulard O, Mehta J, Fryzek J, Olivares R, Iqbal U, Mesa RA. Epidemiology of myelfibrosis (Mf), essential thrombocythemia (Et), and polycythemia vera (Pv) in the european union (Eu). Eur J Haematol. 2013.

  54. Mehta J, Wang H, Iqbal SU, Mesa R. Epidemiology of myeloproliferative neoplasms in the United States. Leukemia Lymphoma. 2013.

  55. Cervantes F, Dupriez B, Passamonti F, Vannucchi AM, Morra E, Reilly JT, et al. Improving survival trends in primary myelofibrosis: an international study. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(24):2981–7.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the staff at the Osteoporosis Clinic, Odense University Hospital, for performing the scans. This work has supported by grants from Danish Cancer Society/Kræftens bekæmpelse (R90-A6062-14S29) and the Region of Southern Denmark (j.nr. 11/28457).

Conflict of interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Farmer.

Additional information

This study has been registered at www.clinicaltrials.gov NCT01816022.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farmer, S., Vestergaard, H., Hansen, S. et al. Bone geometry, bone mineral density, and micro-architecture in patients with myelofibrosis: a cross-sectional study using DXA, HR-pQCT, and bone turnover markers. Int J Hematol 102, 67–75 (2015). https://doi.org/10.1007/s12185-015-1803-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-015-1803-3

Keywords

Navigation