Skip to main content
Log in

Upregulation of CD200R1 in lineage-negative leukemic cells is characteristic of AML1-ETO-positive leukemia in mice

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Activating mutations of c-Kit are frequently found in acute myeloid leukemia (AML) patients harboring t(8;21) chromosomal translocation generating a fusion protein AML1-ETO. Here we show that an active mutant of c-Kit cooperates with AML1-ETO to induce AML in mouse bone marrow transplantation models. Leukemic cells expressing AML1-ETO with c-KitD814V were serially transplantable. Transplantation experiments indicated that lineagec-Kit+Sca-1+ (KSL) leukemic cells, but not lineage+ leukemic cells, were enriched for leukemia stem cells (LSCs). Comparison of gene expression profiles between KSL leukemic and normal cells delineated that CD200R1 was highly expressed in KSL leukemic cells as compared with KSL normal cells. Upregulation of CD200R1 was verified in lineage leukemic cells, but not in lineage+ leukemic cells. CD200R1 expression in the lineage leukemic cells was not correlated with the frequency of LSCs, indicating that CD200R1 is not a useful marker for LSCs in these models. Interestingly, CD200R1 was upregulated in KSL cells transduced with AML1-ETO, but not with other leukemogenic mutants, including c-KitD814V, AML1D171N, and AML1S291fsX300. Consistently, upregulation of CD200R1 in lineage leukemic cells was observed only in the BM of mice suffering from AML1-ETO-positive leukemia. In conclusion, AML1-ETO upregulated CD200R1 in lineage cells, which was characteristic of AML1-ETO-positive leukemia in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Watanabe-Okochi Naoko, Kitaura Jiro, Ono Ryoichi, Harada Hironori, Harada Yuka, Komeno Yukiko, et al. AML1 mutations induced MDS and MDS/AML in a mouse BMT model. Blood. 2008;111:4297–308.

    Article  PubMed  CAS  Google Scholar 

  2. Peterson LF, Boyapati A, Ahn EY, Biggs JR, Okumura AJ, Lo MC, et al. Acute myeloid leukemia with the 8q22;21q22 translocation: secondary mutational events and alternative t(8;21) transcripts. Blood. 2007;110:799–805.

    Article  PubMed  CAS  Google Scholar 

  3. Goyama S, Mulloy JC. Molecular pathogenesis of core binding factor leukemia: current knowledge and future prospects. Int J Hematol. 2011;94:126–33.

    Article  PubMed  CAS  Google Scholar 

  4. Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA. 1991;88:10431–4.

    Article  PubMed  CAS  Google Scholar 

  5. Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S, et al. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood. 1992;80:1825–31.

    PubMed  CAS  Google Scholar 

  6. Okuda T, Cai Z, Yang S, Lenny N, Lyu CJ, van Deursen JM, et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood. 1998;91:3134–43.

    PubMed  CAS  Google Scholar 

  7. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996;84:321–30.

    Article  PubMed  CAS  Google Scholar 

  8. Yergeau DA, Hetherington CJ, Wang Q, Zhang P, Sharpe AH, Binder M, et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet. 1997;15:303–6.

    Article  PubMed  CAS  Google Scholar 

  9. Higuchi M, O’Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell. 2002;1:63–74.

    Article  PubMed  CAS  Google Scholar 

  10. Rhoades KL, Hetherington CJ, Harakawa N, Yergeau DA, Zhou L, Liu LQ, et al. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood. 2000;96:2108–15.

    PubMed  CAS  Google Scholar 

  11. Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci USA. 1998;95:10860–5.

    Article  PubMed  CAS  Google Scholar 

  12. Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA. Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol. 1998;18:7185–91.

    PubMed  CAS  Google Scholar 

  13. Nick HJ, Kim HG, Chang CW, Harris KW, Reddy V, Klug CA. Distinct classes of c-Kit-activating mutations differ in their ability to promote RUNX1-ETO-associated acute myeloid leukemia. Blood. 2012;119:1522–31.

    Article  PubMed  CAS  Google Scholar 

  14. Wang YY, Zhou GB, Yin T, Chen B, Shi JY, Liang WX, et al. AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. Proc Natl Acad Sci USA. 2005;102:1104–9.

    Article  PubMed  CAS  Google Scholar 

  15. Schnittger S, Kohl TM, Haferlach T, Kern W, Hiddemann W, Spiekermann K, et al. KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood. 2006;107:1791–9.

    Article  PubMed  CAS  Google Scholar 

  16. Xiang Z, Kreisel F, Cain J, Colson A, Tomasson MH. Neoplasia driven by mutant c-KIT is mediated by intracellular, not plasma membrane, receptor signaling. Mol Cell Biol. 2007;27:267–82.

    Article  PubMed  CAS  Google Scholar 

  17. Kitayama H, Kanakura Y, Furitsu T, Tsujimura T, Oritani K, Ikeda H, et al. Constitutively activating mutations of c-kit receptor tyrosine kinase confer factor-independent growth and tumorigenicity of factor-dependent hematopoietic cell lines. Blood. 1995;85:790–8.

    PubMed  CAS  Google Scholar 

  18. Gilliland DG. Hematologic malignancies. Curr Opin Hematol. 2001;8:189–91.

    Article  PubMed  CAS  Google Scholar 

  19. Hoang VT, Zepeda-Moreno A, Ho AD. Identification of leukemia stem cells in acute myeloid leukemia and their clinical relevance. Biotechnol J. 2012;7:779–88.

    Article  PubMed  CAS  Google Scholar 

  20. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    Article  PubMed  CAS  Google Scholar 

  21. Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14:1777–84.

    Article  PubMed  CAS  Google Scholar 

  22. Hosen N, Park CY, Tatsumi N, Oji Y, Sugiyama H, Gramatzki M, et al. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci USA. 2007;104:11008–13.

    Article  PubMed  CAS  Google Scholar 

  23. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138:286–99.

    Article  PubMed  CAS  Google Scholar 

  24. Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009;138:271–85.

    Article  PubMed  CAS  Google Scholar 

  25. Aikawa Y, Katsumoto T, Zhang P, Shima H, Shino M, Terui K, et al. PU.1-mediated upregulation of CSF1R is crucial for leukemia stem cell potential induced by MOZ-TIF2. Nat Med. 2010;16:580–5.

    Article  PubMed  CAS  Google Scholar 

  26. Kikushige Y, Shima T, Takayanagi S, Urata S, Miyamoto T, Iwasaki H, et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell. 2010;7:708–17.

    Article  PubMed  CAS  Google Scholar 

  27. Cherwinski HM, Murphy CA, Joyce BL, Bigler ME, Song YS, Zurawski SM, et al. The CD200 receptor is a novel and potent regulator of murine and human mast cell function. J Immunol. 2005;174:1348–56.

    PubMed  CAS  Google Scholar 

  28. Wright GJ, Cherwinski H, Foster-Cuevas M, Brooke G, Puklavec MJ, Bigler M, et al. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol. 2003;171:3034–46.

    PubMed  CAS  Google Scholar 

  29. Yamanishi Y, Kitaura J, Izawa K, Matsuoka T, Oki T, Lu Y, et al. Analysis of mouse LMIR5/CLM-7 as an activating receptor: differential regulation of LMIR5/CLM-7 in mouse versus human cells. Blood. 2008;111:688–98.

    Article  PubMed  CAS  Google Scholar 

  30. Doki N, Kitaura J, Uchida T, Inoue D, Kagiyama Y, Togami K, et al. Fyn is not essential for Bcr-Abl-induced leukemogenesis in mouse bone marrow transplantation models. Int J Hematol. 2012;95:167–75.

    Article  PubMed  Google Scholar 

  31. Nakahara F, Sakata-Yanagimoto M, Komeno Y, Kato N, Uchida T, Haraguchi K, et al. Hes1 immortalizes committed progenitors and plays a role in blast crisis transition in chronic myelogenous leukemia. Blood. 2010;115:2872–81.

    Article  PubMed  CAS  Google Scholar 

  32. Kato N, Kitaura J, Doki N, Komeno Y, Watanabe-Okochi N, Togami K, et al. Two types of C/EBPα mutations play distinct but collaborative roles in leukemogenesis: lessons from clinical data and BMT models. Blood. 2011;117:221–33.

    Article  PubMed  CAS  Google Scholar 

  33. Sato K, Eizumi K, Fukaya T, Fujita S, Sato Y, Takagi H, et al. Naturally occurring regulatory dendritic cells regulate murine cutaneous chronic graft-versus-host disease. Blood. 2009;113:4780–9.

    Article  PubMed  CAS  Google Scholar 

  34. Morita S, Kojima T, Kitamura T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 2000;7:1063–6.

    Article  PubMed  CAS  Google Scholar 

  35. Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T, et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol. 2003;31:1007–14.

    PubMed  CAS  Google Scholar 

  36. Schessl C, Rawat VP, Cusan M, Deshpande A, Kohl TM, Rosten PM, et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest. 2005;115:2159–68.

    Article  PubMed  CAS  Google Scholar 

  37. Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N, et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell. 2004;6:587–96.

    Article  PubMed  CAS  Google Scholar 

  38. Dentesano G, Straccia M, Ejarque-Ortiz A, Tusell JM, Serratosa J, Saura J, et al. Inhibition of CD200R1 expression by C/EBP beta in reactive microglial cells. J Neuroinflammation. 2012;9:165.

    Article  PubMed  Google Scholar 

  39. Rochford JJ, Semple RK, Laudes M, Boyle KB, Christodoulides C, Mulligan C, et al. ETO/MTG8 is an inhibitor of C/EBPbeta activity and a regulator of early adipogenesis. Mol Cell Biol. 2004;24:9863–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Issay Kitabayashi and Yuzuru Kanakura for kindly providing plasmids. This work was supported by Grants-in-aid for Scientific Research on Innovative Areas, MEXT, Japan and Grants-in-aid for Scientific Research (A), JSPS, Japan.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Kitamura.

About this article

Cite this article

Kagiyama, Y., Kitaura, J., Togami, K. et al. Upregulation of CD200R1 in lineage-negative leukemic cells is characteristic of AML1-ETO-positive leukemia in mice. Int J Hematol 96, 638–648 (2012). https://doi.org/10.1007/s12185-012-1207-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-012-1207-6

Keywords

Navigation