Skip to main content
Log in

Grist for the MLL: how do MLL oncogenic fusion proteins generate leukemia stem cells?

  • Progress in Hematology
  • Molecular pathogenesis of leukemia and leukemia stem cells
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

MLL fusion oncogenes are pathogenically associated with 5–10% of human acute leukemias. Through multiple interactions with chromatin regulatory factors, they convert a normal hematopoietic hierarchy into a leukemia cell hierarchy sustained at its apex by a population of inappropriately self-renewing myeloid cells termed leukemia stem cells (LSCs). Initiation of the aberrant leukemia cell hierarchy is associated with an abnormal epigenetic state at Hoxa and Meis1 loci, with concomitant high level Hoxa and Meis1 expression. This introduces at the level of the myeloblast, or thereabouts, a finite probability of self-renewal division where none previously existed. In contrast, differentiation-mediated exit of LSCs from the self-renewing compartment of the leukemia clone depends on the prevailing levels of the transcription factor Myb, which functions as part of an LSC maintenance program influenced, but not directly controlled, by Hoxa and Meis1. Critical biologic and molecular differences between self-renewing progenitor-like LSCs and hematopoietic stem cells could potentially be targeted by novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.

    Article  PubMed  CAS  Google Scholar 

  2. Mackillop WJ, Ciampi A, Till JE, Buick RN. A stem cell model of human tumor growth: implications for tumor cell clonogenic assays. J Natl Cancer Inst. 1983;70:9–16.

    PubMed  CAS  Google Scholar 

  3. Buick RN, Pollak MN. Perspectives on clonogenic tumor cells, stem cells, and oncogenes. Cancer Res. 1984;44:4909–18.

    PubMed  CAS  Google Scholar 

  4. Minden MD, Till JE, McCulloch EA. Proliferative state of blast cell progenitors in acute myeloblastic leukemia (AML). Blood. 1978;52:592–600.

    PubMed  CAS  Google Scholar 

  5. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    Article  PubMed  CAS  Google Scholar 

  6. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.

    Article  PubMed  CAS  Google Scholar 

  7. Somervaille TC, Cleary ML. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell. 2006;10:257–68.

    Article  PubMed  CAS  Google Scholar 

  8. Somervaille TC, Matheny CJ, Spencer GJ, et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell. 2009;4:129–40.

    Article  PubMed  CAS  Google Scholar 

  9. Krivtsov AV, Twomey D, Feng Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006;442:818–22.

    Article  PubMed  CAS  Google Scholar 

  10. Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 2003;17:3029–35.

    Article  PubMed  CAS  Google Scholar 

  11. Taussig DC, Miraki-Moud F, Anjos-Afonso F, et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood. 2008;112:568–75.

    Article  PubMed  CAS  Google Scholar 

  12. Look AT. Oncogenic transcription factors in the human acute leukemias. Science. 1997;278:1059–64.

    Article  PubMed  CAS  Google Scholar 

  13. Basecke J, Whelan JT, Griesinger F, Bertrand FE. The MLL partial tandem duplication in acute myeloid leukaemia. Br J Haematol. 2006;135:438–49.

    Article  PubMed  Google Scholar 

  14. Meyer C, Kowarz E, Hofmann J, et al. New insights to the MLL recombinome of acute leukemias. Leukemia. 2009;23(8):1490–9.

    Article  PubMed  CAS  Google Scholar 

  15. Lavau C, Szilvassy SJ, Slany R, Cleary ML. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J. 1997;16:4226–37.

    Article  PubMed  CAS  Google Scholar 

  16. Corral J, Lavenir I, Impey H, et al. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell. 1996;85:853–61.

    Article  PubMed  CAS  Google Scholar 

  17. Jude CD, Climer L, Xu D, Artinger E, Fisher JK, Ernst P. Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell. 2007;1:324–37.

    Article  PubMed  CAS  Google Scholar 

  18. McMahon KA, Hiew SY, Hadjur S, et al. Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell. 2007;1:338–45.

    Article  PubMed  CAS  Google Scholar 

  19. Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ. Altered Hox expression and segmental identity in Mll-mutant mice. Nature. 1995;378:505–8.

    Article  PubMed  CAS  Google Scholar 

  20. Yokoyama A, Wang Z, Wysocka J, et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol. 2004;24:5639–49.

    Article  PubMed  CAS  Google Scholar 

  21. Milne TA, Martin ME, Brock HW, Slany RK, Hess JL. Leukemogenic MLL fusion proteins bind across a broad region of the Hox a9 locus, promoting transcription and multiple histone modifications. Cancer Res. 2005;65:11367–74.

    Article  PubMed  CAS  Google Scholar 

  22. Guenther MG, Lawton LN, Rozovskaia T, et al. Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes Dev. 2008;22:3403–8.

    Article  PubMed  CAS  Google Scholar 

  23. Hsieh JJ, Cheng EH, Korsmeyer SJ. Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell. 2003;115:293–303.

    Article  PubMed  CAS  Google Scholar 

  24. Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell. 2005;123:207–18.

    Article  PubMed  CAS  Google Scholar 

  25. Ayton PM, Chen EH, Cleary ML. Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein. Mol Cell Biol. 2004;24:10470–8.

    Article  PubMed  CAS  Google Scholar 

  26. Chen W, Kumar AR, Hudson WA, et al. Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells. Cancer Cell. 2008;13:432–40.

    Article  PubMed  CAS  Google Scholar 

  27. Muntean AG, Giannola D, Udager AM, Hess JL. The PHD fingers of MLL block MLL fusion protein-mediated transformation. Blood. 2008;112:4690–3.

    Article  PubMed  CAS  Google Scholar 

  28. DiMartino JF, Ayton PM, Chen EH, Naftzger CC, Young BD, Cleary ML. The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL-AF10. Blood. 2002;99:3780–5.

    Article  PubMed  CAS  Google Scholar 

  29. Yokoyama A, Cleary ML. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell. 2008;14:36–46.

    Article  PubMed  CAS  Google Scholar 

  30. Erfurth FE, Popovic R, Grembecka J, et al. MLL protects CpG clusters from methylation within the Hoxa9 gene, maintaining transcript expression. Proc Natl Acad Sci USA. 2008;105:7517–22.

    Article  PubMed  Google Scholar 

  31. Krivtsov AV, Feng Z, Lemieux ME, et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell. 2008;14:355–68.

    Article  PubMed  CAS  Google Scholar 

  32. Okada Y, Feng Q, Lin Y, et al. hDOT1L links histone methylation to leukemogenesis. Cell. 2005;121:167–78.

    Article  PubMed  CAS  Google Scholar 

  33. Mueller D, Bach C, Zeisig D, et al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood. 2007;110:4445–54.

    Article  PubMed  CAS  Google Scholar 

  34. Bitoun E, Oliver PL, Davies KE. The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet. 2007;16:92–106.

    Article  PubMed  CAS  Google Scholar 

  35. Nie Z, Yan Z, Chen EH, et al. Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner. Mol Cell Biol. 2003;23:2942–52.

    Article  PubMed  CAS  Google Scholar 

  36. Cheung N, Chan LC, Thompson A, Cleary ML, So CW. Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol. 2007;9:1208–15.

    Article  PubMed  CAS  Google Scholar 

  37. So CW, Cleary ML. Common mechanism for oncogenic activation of MLL by forkhead family proteins. Blood. 2003;101:633–9.

    Article  PubMed  CAS  Google Scholar 

  38. So CW, Lin M, Ayton PM, Chen EH, Cleary ML. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell. 2003;4:99–110.

    Article  PubMed  CAS  Google Scholar 

  39. Liu H, Cheng EH, Hsieh JJ. Bimodal degradation of MLL by SCFSkp2 and APCCdc20 assures cell cycle execution: a critical regulatory circuit lost in leukemogenic MLL fusions. Genes Dev. 2007;21:2385–98.

    Article  PubMed  CAS  Google Scholar 

  40. Wang Z, Smith KS, Murphy M, Piloto O, Somervaille TC, Cleary ML. Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature. 2008;455:1205–9.

    Article  PubMed  CAS  Google Scholar 

  41. Rozovskaia T, Feinstein E, Mor O, et al. Upregulation of Meis1 and HoxA9 in acute lymphocytic leukemias with the t(4:11) abnormality. Oncogene. 2001;20:874–8.

    Article  PubMed  CAS  Google Scholar 

  42. Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30:41–7.

    Article  PubMed  CAS  Google Scholar 

  43. Yeoh EJ, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 2002;1:133–43.

    Article  PubMed  CAS  Google Scholar 

  44. Ferrando AA, Armstrong SA, Neuberg DS, et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood. 2003;102:262–8.

    Article  PubMed  CAS  Google Scholar 

  45. Kawagoe H, Humphries RK, Blair A, Sutherland HJ, Hogge DE. Expression of HOX genes, HOX cofactors, and MLL in phenotypically and functionally defined subpopulations of leukemic and normal human hematopoietic cells. Leukemia. 1999;13:687–98.

    Article  PubMed  CAS  Google Scholar 

  46. Ross ME, Mahfouz R, Onciu M, et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood. 2004;104:3679–87.

    Article  PubMed  CAS  Google Scholar 

  47. Bullinger L, Dohner K, Bair E, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med. 2004;350:1605–16.

    Article  PubMed  CAS  Google Scholar 

  48. Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004;350:1617–28.

    Article  PubMed  CAS  Google Scholar 

  49. Roche J, Zeng C, Baron A, et al. Hox expression in AML identifies a distinct subset of patients with intermediate cytogenetics. Leukemia. 2004;18:1059–63.

    Article  PubMed  CAS  Google Scholar 

  50. Alcalay M, Tiacci E, Bergomas R, et al. Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc + AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. Blood. 2005;106:899–902.

    Article  PubMed  CAS  Google Scholar 

  51. Verhaak RG, Goudswaard CS, van Putten W, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood. 2005;106:3747–54.

    Article  PubMed  CAS  Google Scholar 

  52. Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J. 1998;17:3714–25.

    Article  PubMed  CAS  Google Scholar 

  53. Wong P, Iwasaki M, Somervaille TC, So CW, Cleary ML. Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev. 2007;21:2762–74.

    Article  PubMed  CAS  Google Scholar 

  54. Ayton PM, Cleary ML. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev. 2003;17:2298–307.

    Article  PubMed  CAS  Google Scholar 

  55. So CW, Karsunky H, Wong P, Weissman IL, Cleary ML. Leukemic transformation of hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. Blood. 2004;103:3192–9.

    Article  PubMed  CAS  Google Scholar 

  56. Kumar AR, Hudson WA, Chen W, Nishiuchi R, Yao Q, Kersey JH. Hoxa9 influences the phenotype but not the incidence of Mll-AF9 fusion gene leukemia. Blood. 2004;103:1823–8.

    Article  PubMed  CAS  Google Scholar 

  57. Faber J, Krivtsov AV, Stubbs MC, et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood. 2009;113:2375–85.

    Article  PubMed  CAS  Google Scholar 

  58. Zeisig BB, Milne T, Garcia-Cuellar MP, et al. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol. 2004;24:617–28.

    Article  PubMed  CAS  Google Scholar 

  59. Nakanishi H, Nakamura T, Canaani E, Croce CM. ALL1 fusion proteins induce deregulation of EphA7 and ERK phosphorylation in human acute leukemias. Proc Natl Acad Sci USA. 2007;104:14442–7.

    Article  PubMed  CAS  Google Scholar 

  60. Popovic R, Riesbeck LE, Velu CS, et al. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood. 2009;113:3314–22.

    Article  PubMed  CAS  Google Scholar 

  61. Hess JL, Bittner CB, Zeisig DT, et al. c-Myb is an essential downstream target for homeobox-mediated transformation of hematopoietic cells. Blood. 2006;108:297–304.

    Article  PubMed  CAS  Google Scholar 

  62. Horton SJ, Grier DG, McGonigle GJ, et al. Continuous MLL-ENL expression is necessary to establish a “Hox Code” and maintain immortalization of hematopoietic progenitor cells. Cancer Res. 2005;65:9245–52.

    Article  PubMed  CAS  Google Scholar 

  63. Taketani T, Taki T, Sugita K, et al. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood. 2004;103:1085–8.

    Article  PubMed  CAS  Google Scholar 

  64. Liang DC, Shih LY, Fu J, et al. K-Ras mutations and N-Ras mutations in childhood acute leukemias with or without mixed-lineage leukemia gene rearrangements. Cancer. 2006;106:950–6.

    Article  PubMed  CAS  Google Scholar 

  65. Barabe F, Kennedy JA, Hope KJ, Dick JE. Modeling the initiation and progression of human acute leukemia in mice. Science. 2007;316:600–4.

    Article  PubMed  CAS  Google Scholar 

  66. Wei J, Wunderlich M, Fox C, et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell. 2008;13:483–95.

    Article  PubMed  CAS  Google Scholar 

  67. Yilmaz OH, Valdez R, Theisen BK, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature. 2006;441:475–82.

    Article  PubMed  CAS  Google Scholar 

  68. Scholl C, Frohling S, Dunn IF, et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell. 2009;137:821–34.

    Article  PubMed  CAS  Google Scholar 

  69. Liedtke M, Cleary ML. Therapeutic targeting of MLL. Blood. 2009;113:6061–8.

    Article  PubMed  CAS  Google Scholar 

  70. Pearce DJ, Taussig D, Zibara K, et al. AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood. 2006;107:1166–73.

    Article  PubMed  CAS  Google Scholar 

  71. Wojiski S, Guibal FC, Kindler T, et al. PML-RARalpha initiates leukemia by conferring properties of self-renewal to committed promyelocytic progenitors. Leukemia. 2009.

  72. Steidl U, Rosenbauer F, Verhaak RG, et al. Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nat Genet. 2006;38:1269–77.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors apologize to colleagues whose work has not been appropriately cited due to space constraints. TS is supported by Cancer Research UK grant number C147/A6058 and MC is supported by Grants from the Leukemia and Lymphoma Society and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Cleary.

About this article

Cite this article

Somervaille, T.C.P., Cleary, M.L. Grist for the MLL: how do MLL oncogenic fusion proteins generate leukemia stem cells?. Int J Hematol 91, 735–741 (2010). https://doi.org/10.1007/s12185-010-0579-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-010-0579-8

Keywords

Navigation