Skip to main content
Log in

Kinematic outcomes following ACL reconstruction

  • Outcomes Research in Orthopedics (O Ayeni, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Anterior cruciate ligament (ACL) reconstruction aims to restore the translational and rotational motion to the knee joint that is lost after injury. However, despite technical advancements, clinical outcomes are less than ideal, particularly in return to previous activity level. A major issue is the inability to standardize treatment protocols due to variations in materials and approaches used to accomplish ACL reconstruction. These include surgical techniques such as the transtibial and anteromedial portal methods that are currently under use and the wide availability of graft types that will be used to reconstruct the ACL. In addition, concomitant soft tissue injuries to the menisci and capsule are frequently present after ACL injury and, if left unaddressed, can lead to persistent instability even after the ACL has been reconstructed. Advances in the field of biomechanics that help to objectively measure motion of the knee joint may provide more precise data than current subjective clinical measurements. These technologies include extra-articular motion capture systems that measure the movement of the tibia in relation to the femur. With data gathered from these devices, a threshold for satisfactory knee stability may be established in order to correctly identify a successful reconstruction following ACL injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Ellison AE, Berg EE. Embryology, anatomy, and function of the anterior cruciate ligament. Orthop Clin N Am. 1985;16(1):3–14.

    CAS  Google Scholar 

  2. Grood F, Noyes ES. Diagnosis of knee ligament injuries: Biomechanical percepts. In: The crucial ligaments; 1994. pp. 245–60.

  3. Kakarlapudi TK, Bickerstaff DR. Knee instability: isolated and complex. Br J Sports Med. 2000;34(5):395–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Meuffels DE, Favejee MM, Vissers MM, Heijboer MP, Reijman M, Verhaar JAN. Ten year follow-up study comparing conservative versus operative treatment of anterior cruciate ligament ruptures. A matched-pair analysis of high level athletes. Br J Sports Med. 2009;43(5):347–51.

    Article  CAS  PubMed  Google Scholar 

  5. Ralles S, Agel J, Obermeier M, Tompkins M. Incidence of secondary intra-articular injuries with time to anterior cruciate ligament reconstruction. Am J Sports Med. 2015;43(6):1373–9.

    Article  PubMed  Google Scholar 

  6. Ajuied A, Wong F, Smith C, Norris M, Earnshaw P, Back D, et al. Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med. 2014;42(9):2242–52.

    Article  PubMed  Google Scholar 

  7. Leathers MP, Merz A, Wong J, Scott T, Wang JC, Hame SL. Trends and demographics in anterior cruciate ligament reconstruction in the United States. J Knee Surg. 2015;28(5):390–4.

    Article  PubMed  Google Scholar 

  8. Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE. Treatment of anterior cruciate ligament injuries, part I. Am J Sports Med. 2005;33(10):1579–602.

    Article  PubMed  Google Scholar 

  9. Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE. Treatment of anterior cruciate ligament injuries, part 2. Am J Sports Med. 2005;33(11):1751–67.

    Article  PubMed  Google Scholar 

  10. Webster KE, Feller JA, Hartnett N, Leigh WB, Richmond AK. Comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction: a 15-year follow-up of a randomized controlled trial. Am J Sports Med. 2016;44(1):83–90.

    Article  PubMed  Google Scholar 

  11. Aglietti P, Giron F, Losco M, Cuomo P, Ciardullo A, Mondanelli N. Comparison between single-and double-bundle anterior cruciate ligament reconstruction: a prospective, randomized, single-blinded clinical trial. Am J Sports Med. 2010;38(1):25–34.

    Article  PubMed  Google Scholar 

  12. Getelman MH, Friedman MJ. Revision anterior cruciate ligament reconstruction surgery. J Am Acad Orthop Surg. 1999;7(3):189–98.

    Article  CAS  PubMed  Google Scholar 

  13. Ardern CL. Anterior cruciate ligament reconstruction-not exactly a one-way ticket back to the preinjury level: a review of contextual factors affecting return to sport after surgery. Sports Health. 2015;7(3):224–30.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ardern CL, Webster KE, Taylor NF, Feller JA. Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. Br J Sports Med. 2011;45(7):596–606.

    Article  PubMed  Google Scholar 

  15. Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):1861–76.

  16. Saltzman M, Cvetanovich GL, Nwachukwu BU, Mall NA, Bush-Joseph CA, Bach BR. Economic analyses in anterior cruciate ligament reconstruction: a qualitative and systematic review. Am J Sports Med. 2016;44(5):1329–35.

  17. Archibald-Seiffer N, Jacobs JC, Saad C, Jevsevar DS, Shea KG. Review of anterior cruciate ligament reconstruction cost variance within a regional health care system. Am J Sports Med. 2015;43(6):1408–12.

    Article  PubMed  Google Scholar 

  18. Mather RC, Koenig L, Kocher MS, Dall TM, Gallo P, Scott DJ, et al. Societal and economic impact of anterior cruciate ligament tears. J Bone Joint Surg Am. 2013;95(19):1751–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hospodar SJ, Miller MD. Controversies in ACL reconstruction: bone-patellar tendon-bone anterior cruciate ligament reconstruction remains the gold standard. Sports Med Arthrosc. 2009;17(4):242–6.

    Article  PubMed  Google Scholar 

  20. Bonnin M, Amendola NA, Bellemans J, MacDonald SJ, Menetrey J. The knee joint - surgical techniques and strategies. Paris: Springer; 2012.

    Google Scholar 

  21. Araujo PH, Kfuri Junior M, Ohashi B, Hoshino Y, Zaffagnini S, Samuelsson K, et al. Individualized ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2014;22(9):1966–75.

    Article  PubMed  Google Scholar 

  22. Hofbauer M, Muller B, Murawski CD, van Eck CF, Fu FH. The concept of individualized anatomic anterior cruciate ligament (ACL) reconstruction. Knee Surg Sports Traumatol Arthrosc. 2014;22(5):979–86.

    CAS  PubMed  Google Scholar 

  23. Fu FH, van Eck CF, Tashman S, Irrgang JJ, Moreland MS. Anatomic anterior cruciate ligament reconstruction: a changing paradigm. Knee Surg Sports Traumatol Arthrosc. 2015;23(3):640–8.

    Article  PubMed  Google Scholar 

  24. van Eck CF, Lesniak BP, Schreiber VM, Fu FH. Anatomic single- and double-bundle anterior cruciate ligament reconstruction flowchart. Arthroscopy. 2010;26(2):258–68.

    Article  PubMed  Google Scholar 

  25. Araujo PH, van Eck CF, Macalena JA, Fu FH. Advances in the three-portal technique for anatomical single- or double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2011;19(8):1239–42.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kopf S, Forsythe B, Wong AK, Tashman S, Irrgang JJ, Fu FH. Transtibial ACL reconstruction technique fails to position drill tunnels anatomically in vivo 3D CT study. Knee Surg Sports Traumatol Arthrosc. 2012;20(11):2200–7.

    Article  PubMed  Google Scholar 

  27. Riboh JC, Hasselblad V, Godin JA, Mather RC. Transtibial versus independent drilling techniques for anterior cruciate ligament reconstruction: a systematic review, meta-analysis, and meta-regression. Am J Sports Med. 2013;41(11):2693–702.

    Article  PubMed  Google Scholar 

  28. Wang H, Fleischli JE, Zheng NN. Transtibial versus anteromedial portal technique in single-bundle anterior cruciate ligament reconstruction: outcomes of knee joint kinematics during walking. Am J Sports Med. 2013;41(8):1847–56. This recent publication highlights that drilling the femoral tunnel via an anteromedial portal better restores the anterior-posterior translation during the swing phase and the external femoral rotation during midstance compared to the transtibial technique. Likewise, the inability of both techniques to restore kinematics close to the intact level is emphasized.

    Article  PubMed  Google Scholar 

  29. Wang L, Lin L, Feng Y, Fernandes TL, Asnis P, Hosseini A, et al. Anterior cruciate ligament reconstruction and cartilage contact forces—A 3D computational simulation. Clin Biomech. 2015;30(10):1175–80.

    Article  Google Scholar 

  30. Chhabra A, Starman JS, Ferretti M, Vidal AF, Zantop T, Fu FH. Anatomic, radiographic, biomechanical, and kinematic evaluation of the anterior cruciate ligament and its two functional bundles. J Bone Joint Surg Am. 2006;88(4):2–10.

    PubMed  Google Scholar 

  31. Girgis FG, Marshall JL, Monajem A. The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res. 1975;106:216–31.

    Article  Google Scholar 

  32. Zelle BA, Vidal AF, Brucker PU, Fu FH. Double-bundle reconstruction of the anterior cruciate ligament: anatomic and biomechanical rationale. J Am Acad Orthop Surg. 2007;15(2):87–96.

    Article  PubMed  Google Scholar 

  33. Morimoto Y, Ferretti M, Ekdahl M, Smolinski P, Fu FH. Tibiofemoral joint contact area and pressure after single- and double-bundle anterior cruciate ligament reconstruction. Arthroscopy. 2009;25(1):62–9.

    Article  PubMed  Google Scholar 

  34. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL-Y. Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med. 2002;30(5):660–6.

    PubMed  Google Scholar 

  35. Kopf S, Musahl V, Bignozzi S, Irrgang JJ, Zaffagnini S, Fu FH. In vivo kinematic evaluation of anatomic double-bundle anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(9):2172–7.

    Article  PubMed  Google Scholar 

  36. Tashman S, Araki D. Effects of anterior cruciate ligament reconstruction on in vivo, dynamic knee function. Clin Sports Med. 2013;32(1):47–59.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tashman S, Collon D, Anderson K, Kolowich P, Anderst W. Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32(4):975–83.

    Article  PubMed  Google Scholar 

  38. Czamara A, Markowska I, Królikowska A, Szopa A, Domagalska Szopa M. Kinematics of rotation in joints of the lower limbs and pelvis during gait: early results-SB ACLR approach versus DB ACLR approach. Biomed Res Int. 2015;2015:707168. This recent study demonstrated that neither single-bundle nor double-bundle ACL reconstruction was able to restore rotation kinematics in joints of the lower limbs during gait after 14 weeks of postoperative physiotherapy. However, the single-bundle ACL reconstructions showed more substantial disorders of rotation kinematics in the lower limb than double-bundle ACL reconstruction.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hussein M, van Eck CF, Cretnik A, Dinevski D, Fu FH. Prospective randomized clinical evaluation of conventional single-bundle, anatomic single-bundle, and anatomic double-bundle anterior cruciate ligament reconstruction: 281 cases with 3- to 5-year follow-up. Am J Sports Med. 2012;40(3):512–20.

    Article  PubMed  Google Scholar 

  40. Sasaki Y, Chang S-S, Fujii M, Araki D, Zhu J, Marshall B, et al. Effect of fixation angle and graft tension in double-bundle anterior cruciate ligament reconstruction on knee biomechanics. Knee Surg Sports Traumatol Arthrosc. 2016;24(9):2892–8.

  41. Kwon OS, Purevsuren T, Kim K, Park WM, Kwon T-K, Kim YH. Influence of bundle diameter and attachment point on kinematic behavior in double bundle anterior cruciate ligament reconstruction using computational model. Comput Math Methods Med. 2014;2014:948292.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ibrahim SAR, Hamido F, Al Misfer AK, Mahgoob A, Ghafar SA, Alhran H. Anterior cruciate ligament reconstruction using autologous hamstring double bundle graft compared with single bundle procedures. J Bone Joint Surg (Br). 2009;91(10):1310–5.

    Article  CAS  Google Scholar 

  43. Kondo E, Yasuda K, Azuma H, Tanabe Y, Yagi T. Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med. 2008;36(9):1675–87.

    Article  PubMed  Google Scholar 

  44. Adachi N, Ochi M, Uchio Y, Iwasa J, Kuriwaka M, Ito Y. Reconstruction of the anterior cruciate ligament. Single- versus double-bundle multistranded hamstring tendons. J Bone Joint Surg (Br). 2004;86(4):515–20.

    CAS  Google Scholar 

  45. Park S-J, Jung Y-B, Jung H-J, Jung H-J, Shin HK, Kim E, et al. Outcome of arthroscopic single-bundle versus double-bundle reconstruction of the anterior cruciate ligament: a preliminary 2-year prospective study. Arthroscopy. 2010;26(5):630–6.

    Article  PubMed  Google Scholar 

  46. Streich NA, Friedrich K, Gotterbarm T, Schmitt H. Reconstruction of the ACL with a semitendinosus tendon graft: a prospective randomized single blinded comparison of double-bundle versus single-bundle technique in male athletes. Knee Surg Sports Traumatol Arthrosc. 2008;16(3):232–8.

    Article  PubMed  Google Scholar 

  47. Mascarenhas R, Cvetanovich GL, Sayegh ET, Verma NN, Cole BJ, Bush-Joseph C, et al. Does double-bundle anterior cruciate ligament reconstruction improve postoperative knee stability compared with single-bundle techniques? A systematic review of overlapping meta-analyses. Arthroscopy. 2015;31(6):1185–96.

    Article  PubMed  Google Scholar 

  48. Bartlett RJ, Clatworthy MG, Nguyen TN. Graft selection in reconstruction of the anterior cruciate ligament. J Bone Joint Surg (Br). 2001;83(5):625–34.

    Article  CAS  Google Scholar 

  49. Cooper DE, Deng XH, Burstein AL, Warren RF. The strength of the central third patellar tendon graft. A biomechanical study. Am J Sports Med. 1993;21(6):818–23. discussion 823–4.

    Article  CAS  PubMed  Google Scholar 

  50. Yoo JD, Papannagari R, Park SE, DeFrate LE, Gill TJ, Li G. The effect of anterior cruciate ligament reconstruction on knee joint kinematics under simulated muscle loads. Am J Sports Med. 2005;33(2):240–6.

    Article  PubMed  Google Scholar 

  51. Järvelä T, Paakkala T, Kannus P, Järvinen M. The incidence of patellofemoral osteoarthritis and associated findings 7 years after anterior cruciate ligament reconstruction with a bone-patellar tendon-bone autograft. Am J Sports Med. 2001;29(1):18–24.

    PubMed  Google Scholar 

  52. Hamner DL, Brown CH, Steiner ME, Hecker AT, Hayes WC. Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg Am. 1999;81(4):549–57.

    Article  CAS  PubMed  Google Scholar 

  53. Janssen RPA, van der Velden MJF, van den Besselaar M, Reijman M. Prediction of length and diameter of hamstring tendon autografts for knee ligament surgery in Caucasians. Knee Surg Sports Traumatol Arthrosc. 2015. doi:10.1007/s00167-015-3678-5.

    PubMed Central  Google Scholar 

  54. Stäubli HU, Schatzmann L, Brunner P, Rincón L, Nolte LP. Quadriceps tendon and patellar ligament: cryosectional anatomy and structural properties in young adults. Knee Surg Sports Traumatol Arthrosc. 1996;4(2):100–10.

    Article  PubMed  Google Scholar 

  55. Schiavone Panni A, Fabbriciani C, Delcogliano A, Franzese S. Bone-ligament interaction in patellar tendon reconstruction of the ACL. Knee Surg Sports Traumatol Arthrosc. 1993;1(1):4–8.

    Article  CAS  PubMed  Google Scholar 

  56. Yoshiya S, Nagano M, Kurosaka M, Muratsu H, Mizuno K. Graft healing in the bone tunnel in anterior cruciate ligament reconstruction. Clin Orthop Relat Res. 2000;(376):278–86.

  57. Yanke A, Bell R, Lee A, Shewman EF, Wang V, Bach BR. Regional mechanical properties of human patellar tendon allografts. Knee Surg Sports Traumatol Arthrosc. 2015;23(4):961–7.

    Article  PubMed  Google Scholar 

  58. Suzuki T, Shino K, Otsubo H, Suzuki D, Mae T, Fujimiya M, et al. Biomechanical comparison between the rectangular-tunnel and the round-tunnel anterior cruciate ligament reconstruction procedures with a bone-patellar tendon-bone graft. Arthroscopy. 2014;30(10):1294–302.

    Article  PubMed  Google Scholar 

  59. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am. 1993;75(12):1795–803.

    Article  CAS  PubMed  Google Scholar 

  60. Ma Y, Murawski CD, Rahnemai-Azar AA, Maldjian C, Lynch AD, Fu FH. Graft maturity of the reconstructed anterior cruciate ligament 6 months postoperatively: a magnetic resonance imaging evaluation of quadriceps tendon with bone block and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc. 2015;23(3):661–8.

    Article  PubMed  Google Scholar 

  61. Barrett AM, Craft JA, Replogle WH, Hydrick JM, Barrett GR. Anterior cruciate ligament graft failure: a comparison of graft type based on age and Tegner activity level. Am J Sports Med. 2011;39(10):2194–8.

    Article  PubMed  Google Scholar 

  62. Herbort M, Tecklenburg K, Zantop T, Raschke MJ, Hoser C, Schulze M, et al. Single-bundle anterior cruciate ligament reconstruction: a biomechanical cadaveric study of a rectangular quadriceps and bone--patellar tendon--bone graft configuration versus a round hamstring graft. Arthroscopy. 2013;29(12):1981–90.

    Article  PubMed  Google Scholar 

  63. Pailhé R, Cavaignac E, Murgier J, Laffosse J-M, Swider P. Biomechanical study of ACL reconstruction grafts. J Orthop Res. 2015;33(8):1188–96.

    Article  PubMed  Google Scholar 

  64. Cruz AI, Fabricant PD, Seeley MA, Ganley TJ, Lawrence JTR. Change in size of hamstring grafts during preparation for ACL reconstruction: effect of tension and circumferential compression on graft diameter. J Bone Joint Surg Am. 2016;98(6):484–9.

    Article  PubMed  Google Scholar 

  65. Meyer DC, Snedeker JG, Weinert-Aplin RA, Farshad M. Viscoelastic adaptation of tendon graft material to compression: biomechanical quantification of graft preconditioning. Arch Orthop Trauma Surg. 2012;132(9):1315–20.

    Article  PubMed  Google Scholar 

  66. Slone HS, Romine SE, Premkumar A, Xerogeanes JW. Quadriceps tendon autograft for anterior cruciate ligament reconstruction: a comprehensive review of current literature and systematic review of clinical results. Arthroscopy. 2015;31(3):541–54.

    Article  PubMed  Google Scholar 

  67. Kim D, Asai S, Moon C-W, Hwang S-C, Lee S, Keklikci K, et al. Biomechanical evaluation of anatomic single- and double-bundle anterior cruciate ligament reconstruction techniques using the quadriceps tendon. Knee Surg Sports Traumatol Arthrosc. 2015;23(3):687–95.

    Article  PubMed  Google Scholar 

  68. Sasaki N, Farraro KF, Kim KE, Woo SL-Y. Biomechanical evaluation of the quadriceps tendon autograft for anterior cruciate ligament reconstruction: a cadaveric study. Am J Sports Med. 2014;42(3):723–30. The positive biomechanical results of this study support the use of the quadriceps tendon as an autograft for ACL reconstruction due to its ability to restore knee kinematics immediately after ACL surgery under applied loads mimicking clinical examinations.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Miller RM, Rahnemai-Azar AA, Sürer L, Arilla FV, Fu FH, Debski RE, et al. Tensile properties of a split quadriceps graft for ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2016.

  70. Packer JD, Bedi A, Fox AJ, Gasinu S, Imhauser CW, Stasiak M, et al. Effect of immediate and delayed high-strain loading on tendon-to-bone healing after anterior cruciate ligament reconstruction. J Bone Joint Surg Am. 2014;96(9):770–7.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Janssen RPA, Scheffler SU. Intra-articular remodelling of hamstring tendon grafts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2014;22(9):2102–8.

    Article  PubMed  Google Scholar 

  72. Ge Y, Li H, Tao H, Hua Y, Chen J, Chen S. Comparison of tendon-bone healing between autografts and allografts after anterior cruciate ligament reconstruction using magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc. 2015;23(4):954–60.

    Article  PubMed  Google Scholar 

  73. Gadikota HR, Hosseini A, Asnis P, Li G. Kinematic analysis of five different anterior cruciate ligament reconstruction techniques. Knee Surg Relat Res. 2015;27(2):69–75.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bell DR, Kulow SM, Stiffler MR, Smith MD. Squatting mechanics in people with and without anterior cruciate ligament reconstruction: the influence of graft type. Am J Sports Med. 2014;42(12):2979–87.

    Article  PubMed  Google Scholar 

  75. M. Group. Effect of graft choice on the outcome of revision anterior cruciate ligament reconstruction in the multicenter ACL revision study (MARS) cohort. Am J Sports Med. 2014;42(10):2301–10.

    Article  Google Scholar 

  76. Group M. Factors influencing graft choice in revision anterior cruciate ligament reconstruction in the MARS group. J Knee Surg. 2016;29(6):458–63.

  77. Ahldén M, Samuelsson K, Sernert N, Forssblad M, Karlsson J, Kartus J. The Swedish national anterior cruciate ligament register: a report on baseline variables and outcomes of surgery for almost 18,000 patients. Am J Sports Med. 2012;40(10):2230–5.

    Article  PubMed  Google Scholar 

  78. Granan L-P, Inacio MCS, Maletis GB, Funahashi TT, Engebretsen L. Intraoperative findings and procedures in culturally and geographically different patient and surgeon populations: an anterior cruciate ligament reconstruction registry comparison between Norway and the USA. Acta Orthop. 2012;83(6):577–82.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wyatt RWB, Inacio MCS, Liddle KD, Maletis GB. Prevalence and incidence of cartilage injuries and meniscus tears in patients who underwent both primary and revision anterior cruciate ligament reconstructions. Am J Sports Med. 2014;42(8):1841–6.

    Article  PubMed  Google Scholar 

  80. Warren RF, Levy IM. Meniscal lesions associated with anterior cruciate ligament injury. Clin Orthop Relat Res. 1983;(172):32–7.

  81. Wang CJ, Walker PS. Rotatory laxity of the human knee joint. J Bone Joint Surg Am. 1974;56(1):161–70.

    Article  CAS  PubMed  Google Scholar 

  82. Hsieh HH, Walker PS. Stabilizing mechanisms of the loaded and unloaded knee joint. J Bone Joint Surg Am. 1976;58(1):87–93.

    Article  CAS  PubMed  Google Scholar 

  83. Levy IM, Torzilli PA, Warren RF. The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Joint Surg Am. 1982;64(6):883–8.

    Article  CAS  PubMed  Google Scholar 

  84. Levy IM, Torzilli PA, Gould JD, Warren RF. The effect of lateral meniscectomy on motion of the knee. J Bone Joint Surg Am. 1989;71(3):401–6.

    Article  CAS  PubMed  Google Scholar 

  85. Musahl V, Citak M, O’Loughlin PF, Choi D, Bedi A, Pearle AD. The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med. 2010;38(8):1591–7.

    Article  PubMed  Google Scholar 

  86. Allen CR, Wong EK, Livesay GA, Sakane M, Fu FH, Woo SL. Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J Orthop Res. 2000;18(1):109–15.

    Article  CAS  PubMed  Google Scholar 

  87. Papageorgiou CD, Gil JE, Kanamori A, Fenwick JA, Woo SL, Fu FH. The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. Am J Sports Med. 2001;29(2):226–31.

    CAS  PubMed  Google Scholar 

  88. Arner JW, Irvine JN, Zheng L, Gale T, Thorhauer E, Hankins M, et al. The effects of anterior cruciate ligament deficiency on the meniscus and articular cartilage: a novel dynamic in vitro pilot study. Orthop J Sport Med. 2016;4(4):2325967116639895. This novel technique, implanting tantalum beads into the menisci and using dynamic stereo x-rays to track meniscus movement and deformation, highlights how an ACL injury acutely leads to significant meniscus and cartilage abnormalities and may explain the greater incidences of acute lateral meniscus tears and chronic medial meniscus tears.

    Article  Google Scholar 

  89. Atarod M, Frank CB, Shrive NG. Increased meniscal loading after anterior cruciate ligament transection in vivo: a longitudinal study in sheep. Knee. 2015;22(1):11–7.

    Article  PubMed  Google Scholar 

  90. Zhang Y, Huang W, Ma L, Lin Z, Huang H, Xia H. Kinematic characteristics of anterior cruciate ligament deficient knees with concomitant meniscus deficiency during ascending stairs. J Sports Sci. 2016;30:1–8.

    Google Scholar 

  91. Feucht MJ, Salzmann GM, Bode G, Pestka JM, Kühle J, Südkamp NP, et al. Posterior root tears of the lateral meniscus. Knee Surg Sports Traumatol Arthrosc. 2015;23(1):119–25.

    Article  PubMed  Google Scholar 

  92. Forkel P, Herbort M, Sprenker F, Metzlaff S, Raschke M, Petersen W. The biomechanical effect of a lateral meniscus posterior root tear with and without damage to the meniscofemoral ligament: efficacy of different repair techniques. Arthroscopy. 2014;30(7):833–40.

    Article  PubMed  Google Scholar 

  93. Chen L, Linde-Rosen M, Hwang SC, Zhou J, Xie Q, Smolinski P, et al. The effect of medial meniscal horn injury on knee stability. Knee Surg Sports Traumatol Arthrosc. 2015;23(1):126–31.

    Article  PubMed  Google Scholar 

  94. Liu X, Feng H, Zhang H, Hong L, Wang XS, Zhang J. Arthroscopic prevalence of ramp lesion in 868 patients with anterior cruciate ligament injury. Am J Sports Med. 2011;39(4):832–7.

    Article  PubMed  Google Scholar 

  95. Sonnery-Cottet B, Conteduca J, Thaunat M, Gunepin FX, Seil R. Hidden lesions of the posterior horn of the medial meniscus: a systematic arthroscopic exploration of the concealed portion of the knee. Am J Sports Med. 2014;42(4):921–6.

  96. Stephen M, Halewood C, Kittl C, Bollen SR, Williams A, Amis AA. Posteromedial meniscocapsular lesions increase tibiofemoral joint laxity with anterior cruciate ligament deficiency, and their repair reduces laxity. Am J Sports Med. 2016;44(2):400–8.

  97. Claes S, Vereecke E, Maes M, Victor J, Verdonk P, Bellemans J. Anatomy of the anterolateral ligament of the knee. J Anat. 2013;223(4):321–8.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Caterine S, Litchfield R, Johnson M, Chronik B, Getgood A. A cadaveric study of the anterolateral ligament: re-introducing the lateral capsular ligament. Knee Surg Sports Traumatol Arthrosc. 2015;23(11):3186–95.

    Article  PubMed  Google Scholar 

  99. Kennedy MI, Claes S, Fuso FAF, Williams BT, Goldsmith MT, Turnbull TL, et al. The anterolateral ligament: an anatomic, radiographic, and biomechanical analysis. Am J Sports Med. 2015;43(7):1606–15.

    Article  PubMed  Google Scholar 

  100. Vincent J-P, Magnussen RA, Gezmez F, Uguen A, Jacobi M, Weppe F, et al. The anterolateral ligament of the human knee: an anatomic and histologic study. Knee Surg Sports Traumatol Arthrosc. 2012;20(1):147–52.

    Article  PubMed  Google Scholar 

  101. Stijak L, Bumbaširević M, Radonjić V, Kadija M, Puškaš L, Milovanović D, et al. Anatomic description of the anterolateral ligament of the knee. Knee Surg Sports Traumatol Arthrosc. 2014;24(7):2083–8.

  102. Shea KG, Polousky JD, Jacobs JC, Yen Y-M, Ganley TJ. The anterolateral ligament of the knee: an inconsistent finding in pediatric cadaveric specimens. J Pediatr Orthop. 2016;36(5):e51–4.

    Article  PubMed  Google Scholar 

  103. Runer A, Birkmaier S, Pamminger M, Reider S, Herbst E, Künzel K-H, et al. The anterolateral ligament of the knee: a dissection study. Knee. 2016;23(1):8–12.

    Article  PubMed  Google Scholar 

  104. Dodds AL, Halewood C, Gupte CM, Williams A, Amis AA. The anterolateral ligament: anatomy, length changes and association with the segond fracture. Bone Joint J. 2014;96-B(3):325–31.

    Article  CAS  PubMed  Google Scholar 

  105. Guenther D, Griffith C, Lesniak B, Lopomo N, Grassi A, Zaffagnini S, et al. Anterolateral rotatory instability of the knee. Knee Surg Sports Traumatol Arthrosc. 2015;23(10):2909–17.

    Article  PubMed  Google Scholar 

  106. Zens M, Feucht MJ, Ruhhammer J, Bernstein A, Mayr HO, Südkamp NP, et al. Mechanical tensile properties of the anterolateral ligament. J Exp Orthop. 2015;2(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Helito CP, Bonadio MB, Rozas JS, Wey JMP, Pereira CAM, Cardoso TP, et al. Biomechanical study of strength and stiffness of the knee anterolateral ligament. BMC Musculoskelet Disord. 2016;17(1):193.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Dombrowski ME, Costello JM, Ohashi B, Murawski CD, Rothrauff BB, Arilla FV, et al. Macroscopic anatomical, histological and magnetic resonance imaging correlation of the lateral capsule of the knee. Knee Surg Sports Traumatol Arthrosc. 2015. doi:10.1007/s00167-015-3517-8.

    PubMed  Google Scholar 

  109. Rahnemai-Azar AA, Miller RM, Guenther D, Fu FH, Lesniak BP, Musahl V, et al. Structural properties of the anterolateral capsule and iliotibial band of the knee. Am J Sports Med. 2016;44(4):892–7.

    Article  PubMed  Google Scholar 

  110. Zens M, Niemeyer P, Ruhhammer J, Bernstein A, Woias P, Mayr HO, et al. Length changes of the anterolateral ligament during passive knee motion: a human cadaveric study. Am J Sports Med. 2015;43(10):2545–52.

    Article  PubMed  Google Scholar 

  111. Parsons EM, Gee AO, Spiekerman C, Cavanagh PR. The biomechanical function of the anterolateral ligament of the knee. Am J Sports Med. 2015;43(3):669–74.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Rasmussen MT, Nitri M, Williams BT, Moulton SG, Cruz RS, Dornan GJ, et al. An in vitro robotic assessment of the anterolateral ligament, part 1: secondary role of the anterolateral ligament in the setting of an anterior cruciate ligament injury. Am J Sports Med. 2016;44(3):585–92.

    Article  PubMed  Google Scholar 

  113. Wroble RR, Grood ES, Cummings JS, Henderson JM, Noyes FR. The role of the lateral extraarticular restraints in the anterior cruciate ligament-deficient knee. Am J Sports Med. 1993;21(2):257–62. discussion 263.

    Article  CAS  PubMed  Google Scholar 

  114. Hughston JC, Andrews JR, Cross MJ, Moschi A. Classification of knee ligament instabilities. Part II. The lateral compartment. J Bone Joint Surg Am. 1976;58(2):173–9.

    Article  CAS  PubMed  Google Scholar 

  115. Johnson LL. Lateral capsualr ligament complex: anatomical and surgical considerations. Am J Sports Med. 1979;7(3):156–60.

    Article  CAS  PubMed  Google Scholar 

  116. Kittl C, El-Daou H, Athwal KK, Gupte CM, Weiler A, Williams A, et al. The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee. Am J Sports Med. 2016;44(2):345–54. This manuscript recently showed that the proposed anterolateral ligament as well as the anterolateral capsule had a minor role in controlling internal rotation of knee, and therefore have a minimal role in the providing of rotatory stability. The iliotibial tract was the primary restraint at 30° to 90° of flexion, and therefore should be the anatomic structure injured if an extra-articular repair is to be performed.

    Article  PubMed  Google Scholar 

  117. Alter M. Science of flexibility - human kinetics. Champaign: Human Kinetics; 2004.

    Google Scholar 

  118. Musahl V, Hoshino Y, Becker R, Karlsson J. Rotatory knee laxity and the pivot shift. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):601–2.

    Article  PubMed  Google Scholar 

  119. Eastlack ME, Axe MJ, Snyder-Mackler L. Laxity, instability, and functional outcome after ACL injury: copers versus noncopers. Med Sci Sports Exerc. 1999;31(2):210–5.

    Article  CAS  PubMed  Google Scholar 

  120. Galway HR, MacIntosh DL. The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res. 1980;(147):45–50.

  121. Ayeni OR, Chahal M, Tran MN, Sprague S. Pivot shift as an outcome measure for ACL reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):767–77.

    Article  PubMed  Google Scholar 

  122. Jonsson H, Riklund-Ahlström K, Lind J. Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5–9 years after surgery. Acta Orthop Scand. 2004;75(5):594–9.

    Article  PubMed  Google Scholar 

  123. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ. Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32(3):629–34.

    Article  PubMed  Google Scholar 

  124. Lopomo N, Zaffagnini S, Amis AA. Quantifying the pivot shift test: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2013;21(4):767–83.

    Article  PubMed  Google Scholar 

  125. Bedi A, Musahl V, Lane C, Citak M, Warren RF, Pearle AD. Lateral compartment translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg Sports Traumatol Arthrosc. 2010;18(9):1269–76.

    Article  PubMed  Google Scholar 

  126. Hoshino Y, Araujo P, Irrgang JJ, Fu FH, Musahl V. An image analysis method to quantify the lateral pivot shift test. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):703–7.

    Article  PubMed  Google Scholar 

  127. Hoshino Y, Araujo P, Ahldén M, Samuelsson K, Muller B, Hofbauer M, et al. Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg Sports Traumatol Arthrosc. 2013;21(4):975–80.

    Article  PubMed  Google Scholar 

  128. Muller B, Hofbauer M, Rahnemai-Azar AA, Wolf M, Araki D, Hoshino Y, et al. Development of computer tablet software for clinical quantification of lateral knee compartment translation during the pivot shift test. Comput Methods Biomech Biomed Eng. 2016;19(2):217–28.

    Article  Google Scholar 

  129. Hoshino Y, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, et al. In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med. 2007;35(7):1098–104.

    Article  PubMed  Google Scholar 

  130. Lopomo N, Signorelli C, Bonanzinga T, Marcheggiani Muccioli GM, Visani A, Zaffagnini S. Quantitative assessment of pivot-shift using inertial sensors. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):713–7.

    Article  PubMed  Google Scholar 

  131. Zaffagnini S, Lopomo N, Signorelli C, Marcheggiani Muccioli GM, Bonanzinga T, Grassi A, et al. Inertial sensors to quantify the pivot shift test in the treatment of anterior cruciate ligament injury. Joints. 2014;2(3):124–9.

    PubMed  PubMed Central  Google Scholar 

  132. Berruto M, Uboldi F, Gala L, Marelli B, Albisetti W. Is triaxial accelerometer reliable in the evaluation and grading of knee pivot-shift phenomenon? Knee Surg Sports Traumatol Arthrosc. 2013;21(4):981–5.

    Article  CAS  PubMed  Google Scholar 

  133. Araujo PH, Ahlden M, Hoshino Y, Muller B, Moloney G, Fu FH, et al. Comparison of three non-invasive quantitative measurement systems for the pivot shift test. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):692–7.

    Article  PubMed  Google Scholar 

  134. Cohen M, Amaro J, Ejnisman B, Carvalho R, Nakano K, Peccin M, et al. Anterior cruciate ligament reconstruction after 10 to 15 years: association between meniscectomy and osteoarthrosis. Arthroscopy. 2007;23(6):629–34.

    Article  PubMed  Google Scholar 

  135. Kessler MA, Behrend H, Henz S, Stutz G, Rukavina A, Kuster MS. Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg Sports Traumatol Arthrosc. 2008;16(5):442–8.

    Article  CAS  PubMed  Google Scholar 

  136. Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004;50(10):3145–52.

    Article  CAS  PubMed  Google Scholar 

  137. Seon JK, Song EK, Park SJ. Osteoarthritis after anterior cruciate ligament reconstruction using a patellar tendon autograft. Int Orthop. 2006;30(2):94–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Musahl.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Outcomes Research in Orthopedics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naendrup, JH., Zlotnicki, J.P., Chao, T. et al. Kinematic outcomes following ACL reconstruction. Curr Rev Musculoskelet Med 9, 348–360 (2016). https://doi.org/10.1007/s12178-016-9359-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-016-9359-2

Keywords

Navigation