Skip to main content
Log in

Objective measures on knee instability: dynamic tests: a review of devices for assessment of dynamic knee laxity through utilization of the pivot shift test

  • ACL Update: Objective Measures on Knee Instability (V Musahl, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Current reconstructive methods used after anterior cruciate ligament (ACL) injury do not entirely restore native knee kinematics. Evaluation of dynamic knee laxity is important to accurately diagnose ACL deficiency, to evaluate reconstructive techniques, and to construct treatment algorithms for patients with ACL injury. The purpose of this study is to present recent progress in evaluation of dynamic knee laxity through utilization of the pivot shift test. A thorough electronic search was performed and relevant studies were assessed. Certain dynamic knee laxity measurement methods have been present for over 10 years (Navigation system, Electromagnetic sensor system) while other methods (Inertial sensor, Image analysis system) have been introduced recently. Methods to evaluate dynamic knee laxity through the pivot shift test are already potent. However, further refinement is warranted. In addition, to correctly quantify the pivot shift test, the involved forces need to be controlled through either standardization or mechanization of the pivot shift test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Bull AM et al. Incidence and mechanism of the pivot shift. An in vitro study. Clin Orthop Relat Res. 1999;363:219–31.

    Article  PubMed  Google Scholar 

  2. Torg JS, Conrad W, Kalen V. Clinical diagnosis of anterior cruciate ligament instability in the athlete. Am J Sports Med. 1976;4(2):84–93.

    Article  CAS  PubMed  Google Scholar 

  3. Galway HR, MacIntosh DL. The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res. 1980;147:45–50.

    PubMed  Google Scholar 

  4. Prins M. The Lachman test is the most sensitive and the pivot shift the most specific test for the diagnosis of ACL rupture. Aust J Physiother. 2006;52(1):66.

    Article  PubMed  Google Scholar 

  5. Galway RD, McIntosh DL. Pivot shift: a clinical sign of symptomatic anterior cruciate ligament insufficiency. J Bone Joint Surg Am. 1972;54-B:763–4.

    Google Scholar 

  6. Bull AM et al. Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br. 2002;84(7):1075–81.

    Article  CAS  PubMed  Google Scholar 

  7. Kocher MS et al. Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32(3):629–34.

    Article  PubMed  Google Scholar 

  8. Leitze Z et al. Implications of the pivot shift in the ACL-deficient knee. Clin Orthop Relat Res. 2005;436:229–36.

    Article  PubMed  Google Scholar 

  9. Ayeni OR et al. Pivot shift as an outcome measure for ACL reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):767–77.

    Article  PubMed  Google Scholar 

  10. Jonsson H, Riklund-Ahlstrom K, Lind J. Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5-9 years after surgery. Acta Orthop Scand. 2004;75(5):594–9.

    Article  PubMed  Google Scholar 

  11. Peeler J, Leiter J, MacDonald P. Accuracy and reliability of anterior cruciate ligament clinical examination in a multidisciplinary sports medicine setting. Clin J Sport Med. 2010;20(2):80–5.

    Article  CAS  PubMed  Google Scholar 

  12. Kuroda R et al. Similarities and differences of diagnostic manual tests for anterior cruciate ligament insufficiency: a global survey and kinematics assessment. Am J Sports Med. 2012;40(1):91–9.

    Article  PubMed  Google Scholar 

  13. Lane CG, Warren R, Pearle AD. The pivot shift. J Am Acad Orthop Surg. 2008;16(12):679–88.

    Article  PubMed  Google Scholar 

  14. Kitamura N et al. Biomechanical characteristics of 3 pivot-shift maneuvers for the anterior cruciate ligament-deficient knee: in vivo evaluation with an electromagnetic sensor system. Am J Sports Med. 2013;41(11):2500–6.

    Article  PubMed  Google Scholar 

  15. Musahl V et al. The pivot shift: a global user guide. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):724–31.

    Article  PubMed  Google Scholar 

  16. Hoshino Y et al. Standardized pivot shift test improves measurement accuracy. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):732–6.

    Article  PubMed  Google Scholar 

  17. Citak M et al. A mechanized and standardized pivot shifter: technical description and first evaluation. Knee Surg Sports Traumatol Arthrosc. 2011;19(5):707–11.

    Article  PubMed  Google Scholar 

  18. Musahl V et al. Mechanized pivot shift test achieves greater accuracy than manual pivot shift test. Knee Surg Sports Traumatol Arthrosc. 2010;18(9):1208–13.

    Article  PubMed  Google Scholar 

  19. Lorbach O et al. Reliability testing of a new device to measure tibial rotation. Knee Surg Sports Traumatol Arthrosc. 2009;17(8):920–6.

    Article  PubMed  Google Scholar 

  20. Kothari A et al. Evaluating rotational kinematics of the knee in ACL reconstructed patients using 3.0 Tesla magnetic resonance imaging. Knee. 2012;19(5):648–51.

    Article  PubMed  Google Scholar 

  21. Moewis P et al. Towards understanding knee joint laxity: errors in non-invasive assessment of joint rotation can be corrected. Med Eng Phys. 2014;36(7):889–95.

    Article  CAS  PubMed  Google Scholar 

  22. Lefevre N et al. Validity of GNRB(R) arthrometer compared to Telos in the assessment of partial anterior cruciate ligament tears. Knee Surg Sports Traumatol Arthrosc. 2014;22(2):285–90.

    Article  CAS  PubMed  Google Scholar 

  23. Bignozzi S et al. Clinical relevance of static and dynamic tests after anatomical double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2010;18(1):37–42.

    Article  PubMed  Google Scholar 

  24. Hoshino Y et al. Optimal measurement of clinical rotational test for evaluating anterior cruciate ligament insufficiency. Knee Surg Sports Traumatol Arthrosc. 2012;20(7):1323–30.

    Article  PubMed  Google Scholar 

  25. Dessenne V et al. Computer-assisted knee anterior cruciate ligament reconstruction: first clinical tests. J Image Guid Surg. 1995;1(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  26. Koh J. Computer-assisted navigation and anterior cruciate ligament reconstruction: accuracy and outcomes. Orthopedics. 2005;28(10 Suppl):s1283–7.

    PubMed  Google Scholar 

  27. Lane CG et al. In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2008;16(5):487–92.

    Article  PubMed  Google Scholar 

  28. Hoshino Y et al. In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med. 2007;35(7):1098–104.

    Article  PubMed  Google Scholar 

  29. Maeyama A et al. Evaluation of rotational instability in the anterior cruciate ligament deficient knee using triaxial accelerometer: a biomechanical model in porcine knees. Knee Surg Sports Traumatol Arthrosc. 2011;19(8):1233–8.

    Article  PubMed  Google Scholar 

  30. Lopomo N et al. Quantitative assessment of pivot-shift using inertial sensors. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):713–7.

    Article  PubMed  Google Scholar 

  31. Zaffagnini S et al. Inertial sensors to quantify the pivot shift test in the treatment of anterior cruciate ligament injury. Joints. 2014;2(3):124–9.

    PubMed  PubMed Central  Google Scholar 

  32. Borgstrom PH et al. Use of a gyroscope sensor to quantify tibial motions during a pivot shift test. Knee Surg Sports Traumatol Arthrosc. 2014;22(9):2064–9.

    Article  PubMed  Google Scholar 

  33. Borgstrom PH et al. Use of inertial sensors to predict pivot-shift grade and diagnose an ACL injury during preoperative testing. Am J Sports Med. 2015;43(4):857–64. A recent publication presenting a novel device consisting of two different inertial sensors (gyroscope and accelerometer). Impressive levels of accuracy were presented for both diagnosis of ACL rupture and correlation to clinical grading of the pivot shift test.

    Article  PubMed  Google Scholar 

  34. Hoshino Y et al. An image analysis method to quantify the lateral pivot shift test. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):703–7.

    Article  PubMed  Google Scholar 

  35. Desai N et al. Anatomic single- versus double-bundle ACL reconstruction: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2014;22(5):1009–23.

    Article  PubMed  Google Scholar 

  36. Bjornsson H et al. Is double-bundle anterior cruciate ligament reconstruction superior to single-bundle? A comprehensive systematic review. Knee Surg Sports Traumatol Arthrosc. 2015;23(3):696–739.

    Article  PubMed  Google Scholar 

  37. Musahl V et al. Rotatory knee laxity tests and the pivot shift as tools for ACL treatment algorithm. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):793–800.

    Article  PubMed  Google Scholar 

  38. Kuroda R et al. Quantitative measurement of the pivot shift, reliability, and clinical applications. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):686–91. Recent expert opinion focused on summarizing progress in dynamic laxity measurement using electromagnetic devices.

    Article  PubMed  Google Scholar 

  39. Araki D et al. Biomechanical analysis of the knee with partial anterior cruciate ligament disruption: quantitative evaluation using an electromagnetic measurement system. Arthroscopy. 2013;29(6):1053–62.

    Article  PubMed  Google Scholar 

  40. Matsushita T et al. Differences in knee kinematics between awake and anesthetized patients during the Lachman and pivot-shift tests for anterior cruciate ligament deficiency. Orthop J Sports Med. 2013;1(1):2325967113487855. Publication that further elucidates that magnitude of quantified dynamic knee laxity is dependent on the state of consciousness.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nakajima H et al. Insufficiency of the anterior cruciate ligament. Review of our 118 cases. Arch Orthop Trauma Surg. 1979;95(4):233–40.

    Article  CAS  PubMed  Google Scholar 

  42. Hughston JC et al. Classification of knee ligament instabilities. Part I. The medial compartment and cruciate ligaments. J Bone Joint Surg Am. 1976;58(2):159–72.

    CAS  PubMed  Google Scholar 

  43. Nagai K et al. Quantitative comparison of the pivot shift test results before and after anterior cruciate ligament reconstruction by using the three-dimensional electromagnetic measurement system. Knee Surg Sports Traumatol Arthrosc. 2015;23(10):2876–81.

    Article  PubMed  Google Scholar 

  44. Lopomo N et al. An original clinical methodology for non-invasive assessment of pivot-shift test. Comput Methods Biomech Biomed Engin. 2012;15(12):1323–8. The first publication to introduce dynamic laxity assessment using the KiRA accelerometer, a device that has been utilized and evaluated in various studies since.

    Article  PubMed  Google Scholar 

  45. Bedi A et al. Lateral compartment translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg Sports Traumatol Arthrosc. 2010;18(9):1269–76.

    Article  PubMed  Google Scholar 

  46. Berruto M et al. Is triaxial accelerometer reliable in the evaluation and grading of knee pivot-shift phenomenon? Knee Surg Sports Traumatol Arthrosc. 2013;21(4):981–5. An important contribution exposing how experience of the utilized device, in this case an accelerometer, affects the accuracy of a specific method.

    Article  CAS  PubMed  Google Scholar 

  47. Kopf S et al. A new quantitative method for pivot shift grading. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):718–23.

    Article  CAS  PubMed  Google Scholar 

  48. Suykens JK et al. A support vector machine formulation to PCA analysis and its kernel version. IEEE Trans Neural Netw. 2003;14(2):447–50.

    Article  CAS  PubMed  Google Scholar 

  49. Labbe DR et al. Quantitative pivot shift assessment using combined inertial and magnetic sensing. Knee Surg Sports Traumatol Arthrosc. 2015;23(8):2330–8. Through utilization of a micro-electromechanical system sensor, the authors of this publication were capable of correlating measured dynamic laxity of the device to clinical grading.

    Article  PubMed  Google Scholar 

  50. Ishibashi Y et al. Navigation evaluation of the pivot-shift phenomenon during double-bundle anterior cruciate ligament reconstruction: is the posterolateral bundle more important? Arthroscopy. 2009;25(5):488–95.

    Article  PubMed  Google Scholar 

  51. Zaffagnini S et al. New intraoperative protocol for kinematic evaluation of ACL reconstruction: preliminary results. Knee Surg Sports Traumatol Arthrosc. 2006;14(9):811–6.

    Article  CAS  PubMed  Google Scholar 

  52. Zaffagnini S, Klos TV, Bignozzi S. Computer-assisted anterior cruciate ligament reconstruction: an evidence-based approach of the first 15 years. Arthroscopy. 2010;26(4):546–54.

    Article  PubMed  Google Scholar 

  53. Eggerding V et al. Computer-assisted surgery for knee ligament reconstruction. Cochrane Database Syst Rev. 2014;8:Cd007601.

    PubMed  Google Scholar 

  54. Colombet P et al. Using navigation to measure rotation kinematics during ACL reconstruction. Clin Orthop Relat Res. 2007;454:59–65.

    Article  PubMed  Google Scholar 

  55. Lopomo N et al. Reliability of a navigation system for intra-operative evaluation of antero-posterior knee joint laxity. Comput Biol Med. 2009;39(3):280–5.

    Article  PubMed  Google Scholar 

  56. Pearle AD et al. Reliability of navigated knee stability examination: a cadaveric evaluation. Am J Sports Med. 2007;35(8):1315–20.

    Article  PubMed  Google Scholar 

  57. Ishibashi Y et al. Stability evaluation of single-bundle and double-bundle reconstruction during navigated ACL reconstruction. Sports Med Arthrosc. 2008;16(2):77–83.

    Article  PubMed  Google Scholar 

  58. Lopomo N et al. Pivot-shift test: analysis and quantification of knee laxity parameters using a navigation system. J Orthop Res. 2010;28(2):164–9.

    PubMed  Google Scholar 

  59. Klos TV. Computer-assisted anterior cruciate ligament reconstruction. Four generations of development and usage. Sports Med Arthrosc. 2014;22(4):229–36.

    PubMed  Google Scholar 

  60. Zaffagnini S et al. Anatomic double-bundle and over-the-top single-bundle with additional extra-articular tenodesis: an in vivo quantitative assessment of knee laxity in two different ACL reconstructions. Knee Surg Sports Traumatol Arthrosc. 2012;20(1):153–9.

    Article  CAS  PubMed  Google Scholar 

  61. Imbert, P., C. Belvedere, and A. Leardini, Knee laxity modifications after ACL rupture and surgical intra- and extra-articular reconstructions: intra-operative measures in reconstructed and healthy knees. Knee Surg Sports Traumatol Arthrosc, 2015.

  62. Monaco E et al. Extra-articular ACL reconstruction and pivot shift: in vivo dynamic evaluation with navigation. Am J Sports Med. 2014;42(7):1669–74.

    Article  PubMed  Google Scholar 

  63. Imbert P, Belvedere C, Leardini A. Human knee laxity in ACL-deficient and physiological contralateral joints: intra-operative measurements using a navigation system. Biomed Eng Online. 2014;13:86.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Porter MD, Shadbolt B. “Anatomic” single-bundle anterior cruciate ligament reconstruction reduces both anterior translation and internal rotation during the pivot shift. Am J Sports Med. 2014;42(12):2948–54. To our knowledge, this particular publication is the first to evaluate the reliability of a non-invasive computer navigation system.

    Article  PubMed  Google Scholar 

  65. Lopomo N et al. Can rotatory knee laxity be predicted in isolated anterior cruciate ligament surgery? Int Orthop. 2014;38(6):1167–72.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hoshino Y et al. Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg Sports Traumatol Arthrosc. 2013;21(4):975–80. This publication introduces a non-invasive image analysis system using an iPad application to quantify dynamic knee laxity.

    Article  PubMed  Google Scholar 

  67. Nakamura, K., et al. Evaluation of pivot shift phenomenon while awake and under anaesthesia by different manoeuvres using triaxial accelerometer. Knee Surg Sports Traumatol Arthrosc. 2015. doi:10.1007/s00167-015-3740-3.

  68. Martelli S et al. Description and validation of a navigation system for intra-operative evaluation of knee laxity. Comput Aided Surg. 2007;12(3):181–8.

    Article  PubMed  Google Scholar 

  69. Martelli S et al. Validation of a new protocol for navigated intraoperative assessment of knee kinematics. Comput Biol Med. 2007;37(6):872–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sundemo.

Ethics declarations

Conflict of interest

David Sundemo, Eduard Alentorn-Geli, Yuichi Hoshino, Jón Karlsson, and Kristian Samuelsson declare that they have no conflict of interest.

Volker Musahl reports grants from Smith and Nephew, grants from Conmed, grants from Arthrex, and grants from DePuy Synnthes, outside the submitted work.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on ACL Update: Objective Measures on Knee Instability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundemo, D., Alentorn-Geli, E., Hoshino, Y. et al. Objective measures on knee instability: dynamic tests: a review of devices for assessment of dynamic knee laxity through utilization of the pivot shift test. Curr Rev Musculoskelet Med 9, 148–159 (2016). https://doi.org/10.1007/s12178-016-9338-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-016-9338-7

Keywords

Navigation