Skip to main content
Log in

Dissociation Between Cardiovascular Risk Markers and Clinical Outcomes in African Americans: Need for Greater Mechanistic Insight

  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Despite having distinct advantages, such as lower serum triglycerides, higher high-density lipoprotein (HDL) cholesterol levels, and less visceral adiposity, African Americans suffer disproportionately from cardiovascular disease (CVD). In African Americans, attention often focuses on two cardiometabolic risk factors—hypertension and type 2 diabetes mellitus—because they occur more frequently in African Americans than whites. Exactly how hypertension and hyperglycemia appear to override benefits from the lower prevalence of dyslipidemia and other factors is unknown. From a practical viewpoint, as the combined effects of hypertension and type 2 diabetes mellitus are dominant, then primary prevention with vigorous control of these conditions must be of utmost priority. However, because attention is focused on hypertension and type 2 diabetes mellitus, the role of other potential risk factors, such as low-density lipoprotein cholesterol oxidation, HDL cholesterol function, lipoxygenase pathway, endothelial progenitor cells, and natriuretic peptide regulation, have not been well studied. In this review, we discuss the paradox of CVD morbidity and mortality among African Americans and offer suggestions for future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance ••Of major importance

  1. Centers for Disease Control and Prevention. Heart Disease Facts. http://www.cdc.gov/heartdisease/facts.htm

  2. Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics 2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–e215.

    Article  PubMed  Google Scholar 

  3. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): a case control study. Lancet. 2004;364:937–52.

    Article  PubMed  Google Scholar 

  4. Nathan DM, Cleary PA, Backlund MS, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes mellitus: DCCT/EDIC. NEJM. 2005;353:2643–53.

    Article  PubMed  Google Scholar 

  5. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of multifactorial intervention on mortality in type 2 diabetes. NEJM. 2008;358:580–91.

    Article  PubMed  CAS  Google Scholar 

  6. Dagogo-Jack S. Ethnic disparities in type 2 diabetes: Pathophysiology and implications for prevention and management. J Natl Med Assoc. 2003;95:774–89.

    PubMed  Google Scholar 

  7. Hurley LP, Dickinson LM, Estacio RO, et al. Prediction of cardiovascular death in racial/ethnic minorities using Framingham risk factors. Circ Cardiovasc Qual Outcomes. 2010;3:181–7.

    Article  PubMed  Google Scholar 

  8. Mensah GA, Mokdad AH, Ford ES, et al. State of disparities in cardiovascular health in the United States. Circulation. 2005;111:1233–41.

    Article  PubMed  Google Scholar 

  9. Kurian AK, Cardarelli KM. Racial and ethnic differences in cardiovascular disease risk factors: a systematic review. Ethn Dis. 2007;17:143–52.

    PubMed  Google Scholar 

  10. Harris MI. Non-insulin dependent diabetes mellitus in black and white Americans. Diabetes Metab Rev. 1990;6:71–90.

    Article  PubMed  CAS  Google Scholar 

  11. Ford ES, Giles WH, Dietz W. Prevalence of the metabolic syndrome among US adults, findings from the Third National Health and Nutrition Examination Survey. JAMA. 2002;287:356–9.

    Article  PubMed  Google Scholar 

  12. •• Sumner AE, Cowie CC. Ethnic differences in ability of triglyceride levels to identify insulin resistance. Atherosclerosis. 2008;196:696–703. Using the NHANES 1999-2002 database, the authors found lower triglyceride levels and a lower prevalence of MetS in non-Hispanic blacks than Hispanics and non-Hispanic whites, underscoring the importance of ethnic differences in triglycerides.

    Article  PubMed  CAS  Google Scholar 

  13. Chen W, Bao W, Begum S, Elkasabany A, Srinivasan SR. Berenson GS: age-related patterns of the clustering of cardiovascular risk variables of syndrome X from childhood to young adulthood in a population made up of black and white subjects, The Bogalusa Heart Study. Diabetes. 2000;49:1042–8.

    Article  PubMed  CAS  Google Scholar 

  14. •• Katzmarzyk PT, Bray GA, Greenway FL, et al. Racial differences in abdominal depot-specific adiposity in white and African-American adults. Am J Clin Nutr. 2010;91:7–15. This report documents lower intraabdominal fat in African Americans compared with whites. After adjustment for covariates, African American men and women had lower visceral adipose tissue than white men and women. The situation is reversed with regard to subcutaneous fat, which was lower in whites, indicating marked ethnic heterogeneity in fat distribution.

    Article  PubMed  CAS  Google Scholar 

  15. Lovejoy JC, de la Bretonne JA, Klemperer M, Tulley R. Abdominal fat distribution and metabolic risk factors: effects of race. Metabolism. 1996;45:1119–24.

    Article  PubMed  CAS  Google Scholar 

  16. • Centers for Disease Control and Prevention. Cigarette Smoking Among Adults and Trends in Smoking Cessation—United States, 2008. Morbidity and Mortality Weekly Report. 2009;58(44):1227–32. This national report shows roughly similar cigarette smoking rates in whites and blacks, indicating that differences in smoking do not explain ethnic disparity in CVD.

    Google Scholar 

  17. Galassi A, Reynolds K, He J. Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. American Journal of Medicine. 2006;119:812–9.

    Article  PubMed  CAS  Google Scholar 

  18. Summer AE. Ethnic differences in triglyceride levels and high-density lipoprotein lead to underdiagnosis of the metabolic syndrome in black children and adults. J Pediatr. 2009;155:e7–e11.

    Article  Google Scholar 

  19. Carroll MD, Lacher DA, Sorlie PD, et al. Trends in serum lipids and lipoproteins of adults, 1960-2002. JAMA. 2005;295:1773–81.

    Article  Google Scholar 

  20. Dietz WH. Prevalence of the metabolic syndrome among US adults, findings from the Third National Health and Nutrition Examination Survey. JAMA. 2002;287:356–9.

    Article  PubMed  Google Scholar 

  21. Yanovski SZ, Avila NA, Hubbard VS. Visceral adipose tissue differences in black and white women. Am J Clin Nutr. 1995;61:765–71.

    PubMed  Google Scholar 

  22. Arsenault BJ, Pibarot P, Despres JP. The quest for the optimal assessment of global cardiovascular risk: are traditional risk factors and metabolic syndrome partners in crime? Cardiology. 2009;113:35–49.

    Article  PubMed  Google Scholar 

  23. Despres JP, Lemieux I, Bergeron J, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. 2008;28:1039–49.

    Article  PubMed  CAS  Google Scholar 

  24. Arsenault BJ, Lemieux I, Despres JP, et al.: The hypertriglyceridemic-waist phenotype and the risk of coronary artery disease: results from the EPIC-Norfolk prospective population study. CMAJ 2010, early release

  25. Sam S, Haffner S, Davidson MH, et al. Hypertriglyceridemic waist phenotype predicts increased visceral fat in subjects with type 2 diabetes. Diabetes Care. 2009;32:1916–20.

    Article  PubMed  CAS  Google Scholar 

  26. Lemieux I, Almeras N, Mauriege P, et al. Prevalence of “hypertriglyceride waist” in men who participated in the Quebec Health Survey: association with atherogenic and diabetogenic metabolic risk factors. Can J Cardiol. 2002;18:725–32.

    PubMed  Google Scholar 

  27. Sumner AE, Vega GL, Genovese DJ. Normal triglyceride levels despite insulin resistance in African Americans: role of lipoprotein lipase. Metabolism Clinical and Experimental. 2005;54:902–9.

    PubMed  CAS  Google Scholar 

  28. Ross R, Aru J, Freeman J, et al. Abdominal adiposity and insulin resistance in obese men. Am J Physiol Endocrinol Metab. 2002;282:E657–63.

    PubMed  CAS  Google Scholar 

  29. Porter SA, Massaro JM, Hoffman U, et al. Abdominal subcutaneous adipose tissue: a protective fat depot? Diabetes Care. 2009;32:1068–75.

    Article  PubMed  Google Scholar 

  30. Bajaj HS, Brennan DM, Hoogwerf BJ. Clinical utility of waist circumference in predicting all cause mortality in a preventive cardiology clinic population. A précis database study. Obesity. 2009;17:1615–20.

    Article  PubMed  Google Scholar 

  31. Stefan N, Kantartzis K, Machann J, et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008;168:1609–16.

    Article  PubMed  Google Scholar 

  32. Wildman RP, Muntner P, Reynolds K, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering. Arch Intern Med. 2008;168:1617–24.

    Article  PubMed  Google Scholar 

  33. Fontaine KR, Redden DT, Wang C, et al. Years of life lost due to obesity. JAMA. 2003;289:187–93.

    Article  PubMed  Google Scholar 

  34. Reis JP, Araneta MR, Wingard DL, et al. Overall obesity and abdominal adiposity as predictors of mortality in U.S. White and Black adults. Ann Epidemiol. 2009;19:134–42.

    Article  PubMed  Google Scholar 

  35. Carnethon M, Lynch EB, Dyer AR, et al. Comparison of risk factors for cardiovascular mortality in Black and White adults. Arch Intern Med. 2006;166:1196–202.

    Article  PubMed  Google Scholar 

  36. Jakicic JM, Gregg E, Knowler W, et al. Activity patterns of obese adults with type 2 diabetes in look AHEAD study. Med Sci Sports Exerc. 2010;42:1995–2005.

    Article  PubMed  Google Scholar 

  37. Myers J, Kaykha A, George S, et al. Fitness versus physical activity patterns in predicting mortality in men. Am J Med. 2004;117:912–8.

    Article  PubMed  Google Scholar 

  38. Green TL, Darity Jr WA. Under the skin: using theories from biology and the social sciences to explore the mechanism behind the black white health gap. Am J Public Health. 2010;100 Suppl 1:S36–40.

    Article  PubMed  Google Scholar 

  39. Diabetes Prevention Program Research Group. Impact of intensive lifestyle and metformin therapy on cardiovascular disease risk factors in the diabetes prevention program. Diabetes Care. 2005;28:888–94.

    Article  Google Scholar 

  40. Dagogo-Jack S, Egbuonu N, Edeoga C. Principles and practice of nonpharmacological interventions to reduce cardiometabolic risk. Med Princ Pract. 2010;19:167–75. This is a comprehensive review of landmark clinical intervention trials for diabetes prevention, and an overview of the literature on dietary and lifestyle interventions to prevent heart disease.

    Article  PubMed  Google Scholar 

  41. • The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 2002, 288: 298-299.

  42. Stampfer MJ, Ridker PM, Dzau VJ. Risk factor criteria. Circulation. 2004;109:IV-3–5.

    Article  Google Scholar 

  43. Hill JM, Zalos G, Halcox JPJ, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. NEJM. 2003;348:593–600.

    Article  PubMed  Google Scholar 

  44. Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. NEJM. 2005;353:999–1007.

    Article  PubMed  CAS  Google Scholar 

  45. Sakuma N, Saeki T, Ito T, et al. HDL2 can inhibit further oxidative modification of partially oxidized LDL. J Atheroscler Thromb. 2010;17:229–34.

    PubMed  CAS  Google Scholar 

  46. Kullo IJ, Ding K. Patterns of population differentiation of candidate genes for cardiovascular disease. BMC Genet. 2007;8:48.

    Article  PubMed  Google Scholar 

  47. Dwyer JH, Allayee H, Dwyer KM, et al. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med. 2004;350:29–37.

    Article  PubMed  CAS  Google Scholar 

  48. Maznyczka A, Braund P, Mangino M, Samani NJ. Arachidonate 5-lipoxygenase (5-LO) promoter genotype and risk of myocardial infarction: a case-control study. Atherosclerosis. 2008;199:328–32.

    Article  PubMed  CAS  Google Scholar 

  49. Fisher NDL, Hurwitz S, Jeunemaitre X, et al. Familial aggregation of low-renin hypertension. Hypertension. 2002;39:914–8.

    Article  PubMed  CAS  Google Scholar 

  50. Pitzalis MV, Sarzani R, Dessi-Fulgheri P, et al. Allelic variants of natriuretic peptide receptor genes are associated with family history of hypertension and cardiovascular phenotype. J Hypertens. 2003;21:1491–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Samuel Dagogo-Jack is supported in part by National Institutes of Health Grants R01 DK067269 and MO1 RR00211.

Disclosure

Samuel Dagogo-Jack has received grants from AstraZeneca, Bristol-Myers Squibb, and Novo Nordisk. He has received honoraria from Eli Lilly, GlaxoSmithKline, Merck, and Roche. Ibiayi Dagogo-Jack reports no potential conflict of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Dagogo-Jack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dagogo-Jack, I., Dagogo-Jack, S. Dissociation Between Cardiovascular Risk Markers and Clinical Outcomes in African Americans: Need for Greater Mechanistic Insight. Curr Cardiovasc Risk Rep 5, 200–206 (2011). https://doi.org/10.1007/s12170-011-0160-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12170-011-0160-x

Keywords

Navigation