Skip to main content
Log in

Determination of Haloxyfop-Methyl, Linuron, and Procymidone Pesticides in Carrot Using SLE-LTP Extraction and GC-MS

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

This study aimed to optimize and validate an analytical method for extraction, detection, and quantification of haloxyfop-methyl, procymidone, and linuron pesticides in carrot samples using solid–liquid extraction methods and low temperature partition (SLE-LTP), accompanied by gas chromatography coupled to mass spectrometry (GC-MS). For SLE-LTP technical optimization, we utilized a complete factorial planning, which had as its variables, agitation time, freezing time, and the correct sample mass/extracting solution volume ratio. The organic extract obtained was analyzed by GC-MS. To test the performance of this procedure, the method was validated and applied to the monitoring of pesticide residues in 20 samples of carrot produced in Alto Paranaíba, Minas Gerais, Brazil. The proposed method showed linearity between 0.5 and 3.5 mg·kg−1 with correlation coefficients greater than 0.99. The quantification limits were 0.48 mg·kg−1 for haloxyfop-methyl, 0.69 mg·kg−1 for linuron, and 0.65 mg·kg−1 for procymidone, values below the maximum residue limit provided by international legislation of 1.0 mg·kg−1 for linuron and procymidone. The use of haloxyfop-methyl is not approved in the cultivation of carrot. The recovery percentages were between 90 and 110 %, with a coefficient of variation of less than 12 %. Ten percent of the carrot samples monitored showed residues of linuron and procymidone in concentrations exceeding those permitted by Brazilian law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abad FC, Winck PR, Benvenutti EV, Peralba MCR, Caramão EB (2007) p-Nitro-N-propylaniline/silica: synthesis, characterization, and its application in matrix solid phase dispersion for multiresidue analysis of pesticides in carrots. J Sep Sci 30:2109–2116. doi:10.1002/jssc.200700065

    Article  CAS  Google Scholar 

  • Abad FC, Winck PR, Silva JM, Caramão EB, Zini CA (2010) Multiresidue determination of pesticides in carrots using pressurized liquid extraction and gas chromatography with mass spectrometry detector. J Braz Chem Soc 21:461–468. doi:10.1590/S0103-50532010000300010

    Article  CAS  Google Scholar 

  • Agüerra A (2002) Multiresidue method for the analysis of multiclass pesticides in agricultural products by gas chromatography-tandem mass spectrometry. Analyst 1:347–354. doi:10.1039/B109499H

    Article  Google Scholar 

  • Anastassiades M, Lehotay SJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86:412–431

    CAS  Google Scholar 

  • Bakore N, John PJ, Bhatnagar P (2003) Organochlorine pesticide residues in wheat and drinking water samples from Jaipur, Rajasthan, Índia. Environ Monit Assess 98:381–389. doi:10.1023/B:EMAS.0000038197.76047.83

    Article  Google Scholar 

  • BRASIL. Agência Nacional de Vigilância Sanitária - ANVISA. Programa de Análise de Resíduos de Agrotóxicos em Alimentos (PARA) (2010) Relatório de atividades de 2009. ANVISA, Brasília

    Google Scholar 

  • BRASIL. Ministério da Agricultura Pecuária e Abastecimento (2011) Manual de garantia da qualidade analítica. MAPA/ACS, Brasília

    Google Scholar 

  • BRASIL. Ministério da Agricultura, Pecuária e Abastecimento—MAPA (2012) IN n° 27, de 11 de dezembro de 2012. Tabela de agrotóxicos monitorados e limites máximos de resíduos. MAPA, Brasília, n.240

    Google Scholar 

  • Celeiro M, Lompart M, Lamas JP, Lores M, Garcia-Jares C, Dagnac T (2014) Determination of fungicides in white grape bagasse by pressurized liquid extraction and gas chromatography tandem mass spectrometry. J Chromatogr A 23:18–25. doi:10.1016/j.chroma.2014.03.05

    Article  Google Scholar 

  • Costa AIG, Queiroz MELR, Neves AAN, Sousa FA, Zambolim L (2015) Determination of pesticides in lettuce using solid–liquid extraction with low temperature partitioning. Food Chem 15:64–71. doi:10.1016/j.foodchem.2015.02.070

    Article  Google Scholar 

  • Dias NA, Simão V, Merib J, Carasek E (2015) Use of green coating (cork) in solid-phase microextraction for the determination of organochlorine pesticides in water by gas chromatography-electron capture detection. Talanta 134:409–414. doi:10.1016/j.talanta.2014.11.045

    Article  Google Scholar 

  • EFSA (2015) European Food Safety Authority. the 2013 European Union report on pesticide residues in food. EFSA J 13:1–169. doi:10.2903/j.efsa.2015.4038

    Google Scholar 

  • European Comission (2007) Method validation and quality control procedures for pesticide residues. Analysis in Food and feed

  • Freitas RDS, Queiroz MELR, Faroni LRA, Heleno FF, Moura VV (2014) Desenvolvimento do método de extração sólido-líquido com partição em baixa temperatura para determinação de inseticidas em grãos de milho ozonizados. Quim Nov. 37:238–243. doi:10.5935/0100-4042.20140041

  • Frenich AG, Fernandez MDMM, Moreno LD, Vidal JLM, Lopez-Gutierrez N (2012) Multiresidue pesticide analysis of tuber and root commodities by QuEChERS extraction and ultra-performance liquid chromatography coupled to tandem mass spectrometry. J AOAC Int 95:1319–1330. doi:10.5740/jaoacint.SGE_GarridoFrenich

    Article  CAS  Google Scholar 

  • Giordano A, Richter P, Ahumada I (2011) Determination of pesticides in river water using rotating disk sorptive extraction and gas chromatography–mass spectrometry. Talanta 85:2425–2429. doi:10.1016/j.talanta.2011.07.087

    Article  CAS  Google Scholar 

  • González-Rodríguez RM, Cancho-Grande B, Simal-Gándara J (2011) Decay of fungicide residues during vinification of white grapes harvested after the application of some new active substances against downy mildew. Food Chem 125:549–560. doi:10.1016/j.foodchem.2010.09.047

    Article  Google Scholar 

  • Granby K, Andersen JH, Christensen HB (2004) Analysis of pesticides in fruit, vegetables and cereals using methanolic extraction and detection by liquid chromatography–tandem mass spectrometry. Anal Chim Acta 520:165–176. doi:10.1016/j.aca.2004.05.088

    Article  CAS  Google Scholar 

  • Heleno FF, Queiroz MELR, Neves AA, Freitas RS, Faroni LRA, Oliveira AF (2014a) Effects of ozone fumigation treatment on the removal of residual difenoconazole from strawberries and on their quality. J Environ Sci Heal B 4:94–101. doi:10.1080/03601234.2014.846736

    Article  Google Scholar 

  • Heleno FF, Queiroz MELR, Neves AA, Oliveira AF (2014b) Optimization, validation and application of a method for determination of difenoconazole residues in strawberries after multiple applications. Quim Nov. 37:153–157. doi:10.1590/S0100-40422014000100025

  • ICH – International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use, Q2B (1996) Validation of analytical procedures: methodoloy

  • Karmakar R, Singh SB, Kulshrestha G (2012) Water based microwave assisted extraction of thiamethoxam residues from vegetables and soil for determination by HPLC. Bull Environ Contam Toxicol 88:119–123. doi:10.1007/s00128-011-0444

    Article  CAS  Google Scholar 

  • Lehotay SJ, Anastassiades M, Majors RE (2010a) The QuEChERS revolution. LC-GC Europ 8:418–429

    Google Scholar 

  • Lehotay SJ, Kyung AS, Hyeyoung K, Urairat K, Wusheng F, Katerina M, Eunha H, Natchanun L (2010b) Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J Chromatogr A 1217:2548–2560. doi:10.1016/j.chroma.2010.01.044

    Article  CAS  Google Scholar 

  • Liang P, Wang J, Liu G, Guan J (2014) Determination of four sulfonylurea herbicides in tea by matrix solid-phase dispersion cleanup followed by dispersive liquid–liquid microextraction. J Sep Sci 37:2380–2387. doi:10.1002/jssc.201400449

    Article  CAS  Google Scholar 

  • Lozowick B, Kaczynski P (2011) Pesticide residues in apples (2005–2010). Arch Environ Prot 37:43–54, PL ISSN 2083–4772

    Google Scholar 

  • Mastovska K, Lehotay SJ, Hajslova J (2001) Optimization and evaluation of low-pressure gas chromatography–mass spectrometry for the fast analysis of multiple pesticide residues in a food commodity. J Chromatogr A 926:291–308

    Article  CAS  Google Scholar 

  • Morais EHC, Rodrigues AAZ, Queiroz MELR, Neves AA, Morais PHD (2014) Determination of thiamethoxam, triadimenol and deltamethrin in pineapple using SLE-LTP extraction and gas chromatography. Food Control 42:9–17. doi:10.1016/j.foodcont.2014.01.024

    Article  Google Scholar 

  • Ribani M, Botolli CBG, Collins CH, Jardim ICSF, Melo LFC (2004) Validação em método cromatográfico e eletroforéticos. Quim Nov. 27:771–780. doi:10.1590/S0100-40422004000500017

  • Sanagi MM, Salleh S, Ibrahim WAW et al (2013) Aboul-Enein. molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples. J Food Compos Anal 32:155–161. doi:10.1016/j.jfca.2013.09.001

    Article  CAS  Google Scholar 

  • Shizuka SS, Satoru N, Rieko M (2014) Multiresidue analysis of pesticides in vegetables and fruits by supercritical fluid extraction and liquid chromatography-tandem mass spectrometry. Food Hyg Safe Sci 55:142–151. doi:10.3358/shokueishi.55.142

    Article  Google Scholar 

  • Sousa DA, Gonçalves RM, Heleno FF, Queiroz MELR, MARCHI MRR (2014) Chemometric optimization of solid–liquid extraction with low-temperature partition (SLE-LTP) for determination of persistent organic pollutants in Caiman yacare eggs. Microchem J 114:266–272. doi:10.1016/j.microc.2014.01.012

    Article  CAS  Google Scholar 

  • Štajnbaher D, Zupancic-Kralj L (2003) Multiresidue method for determination of 90 pesticides in fresh fruits and vegetables using solid-phase extraction and gas chromatography–mass spectrometry. J Chromatogr A 1015:185–198. doi:10.1016/S0021-9673(03)01211-1

    Article  Google Scholar 

  • USEPA. United States Environmental Protection Agency (2013) Soil screening guidance: user’s guide. Office of Solid Waste and Emergency Response, Washington, DC

    Google Scholar 

  • Vieira HP, Neves AA, Queiroz MELR (2007) Otimização e validação da técnica de extração líquido-líquido com partição em baixa temperatura (ELL-PBT) para piretróides em água e análise por CG. Quim Nov. 30:535–540. doi:10.1590/S0100-40422007000300006

Download references

Funding

No funding exists.

Conflict of Interest

All authors declare that they have no conflict of interest.

Compliance with Ethical Standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico Garcia Pinto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, E.A., Lara, M.C.R., dos Reis, M.R. et al. Determination of Haloxyfop-Methyl, Linuron, and Procymidone Pesticides in Carrot Using SLE-LTP Extraction and GC-MS. Food Anal. Methods 9, 1344–1352 (2016). https://doi.org/10.1007/s12161-015-0315-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-015-0315-3

Keywords

Navigation