Skip to main content

Advertisement

Log in

Breed-Specific Detection of Mangalica Meat in Food Products

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

A fast and reliable diagnostic system has been developed for the detection of Mangalica meat in foods. This qualitative test is based on a recombinase polymerase amplification which can be performed on the field, in situ, where it may be necessary to determine Mangalica content in food products at once. The required equipments for the procedure are pipettes, a portable homogenizer and a portable thermostat. DNA amplification is carried out at a constant temperature, and the detection is based on antibody reaction. The detection limit is one copy of the target sequence in 1 μl reaction volume. The test can be used for uncovering falsification of local brands on the spot within a very short (25–45 min) period of time. The present approach can be adopted for the detection of other food ingredients, if the species-specific target DNA sequence is known, e.g. in case of chicken, turkey, horse, and cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Crannell ZA, Rohrman B, Richards-Kortum R (2014) Quantification of HIV-1 DNA using real-time recombinase polymerase amplification. Anal Chem 86:5615–5619

    Article  CAS  Google Scholar 

  • Daza A, Olivares A, Rey AI, Ruiz J, López-Bote CJ (2008) Iberian pig production : the problems of success. In: Olaizola A, Boutonnet JP, Bernués A (eds) Mediterranean livestock production: uncertainties and opportunities, 78th edn. CIHEAM/CITA/CITA, Options Méditerranéennes: Série A. Séminaires Méditerranéens, Zaragoza, pp 163–171

    Google Scholar 

  • Egerszegi I, Rátky J, Solti L, Brüssow K-P (2003) Mangalica—an indigenous swine breed from Hungary (review). Archiv Tierzucht 46:245–256

    Google Scholar 

  • El Wahed AA, El-Deeb A, El-Tholoth M, Kader HAE, Ahmed A, Hassan S, Hoffmann B, Haas B, Shalaby MA, Hufert FT, Weidmann M (2013) A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus. Plos One, doi: 10.1371/journal.pone.0071642

  • Euler M, Wang Y, Heidenreich D, Patel P, Strohmeier O, Hakenberg S, Niedrig M, Hufert FT, Weidmann M (2013) Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents. J Clin Microbiol 51:1110–1117

    Article  CAS  Google Scholar 

  • Hill-Cawthorne GA, Hudson LO, El Ghany MF, Piepenburg O, Nair M, Dodgson A, Forrest MS, Clark TG, Pain A (2014) Recombinations in staphylococcal cassette chromosome mec elements compromise the molecular detection of methicillin resistance in Staphylococcus aureus. PLoS One 9:e101419. doi:10.1371/journal.pone.0101419

    Article  Google Scholar 

  • Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M (2014) Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar J 13:99

    Article  Google Scholar 

  • Koo C, Malapi-Wight M, Kim HS, Cifci OS, Vaughn-Diaz VL, Ma B, Kim S, Abdel-Raziq H, Ong K, Jo YK, Gross DC, Shim WB, Han A (2013) Development of a real-time microchip PCR system for portable plant disease diagnosis. PLoS One, doi: 10.1371/journal.pone.008270.

  • Levin JD, Johnson AW, Demple B (1988) Homogeneous Escherichia coli endonuclease IV. Characterization of an enzyme that recognizes oxidative damage in DNA. J Biol Chem 263:8066–8071

    CAS  Google Scholar 

  • Molnár J, Nagy T, Stéger V, Tóth G, Marincs F, Barta E (2014) Genome sequencing and analysis of Mangalica, a fatty local pig of Hungary. BMC Genomics 15:761

    Article  Google Scholar 

  • Oyola SO, Otto TD, Gu Y, Maslen G, Manske M, Campino S, Turner DJ, Macinnis B, Kwiatkowski DP, Swerdlow HP, Quail MA (2012) Optimizing illumina next-generation sequencing library preparation for extremely at-biased genomes. BMC Genomics 13:1

    Article  CAS  Google Scholar 

  • Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. Plos Biology 4:e204. doi:10.1371/journal.pbio.0040204

    Article  Google Scholar 

  • Rohrman BA, Richards-Kortum R (2012) A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab Chip 12:3082–3088

    Article  CAS  Google Scholar 

  • Sakai K, Trabasso P, Moretti ML, Mikami Y, Kamei K, Gonoi T (2014) Identification of fungal pathogens by visible microarray system in combination with isothermal gene amplification. Mycopathologia, doi:10.1007/s11046-014-9756-2

  • Santiago-Felipe S, Tortajada-Genaro LA, Puchades R, Maquieira A (2014) Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis. Anal Chim Acta 811:81–87. doi:10.1016/j.aca.2013.12.017

    Article  CAS  Google Scholar 

  • Straadt IK, Aaslyng MD, Bertram HC (2013) Sensory and consumer evaluation of pork loins from crossbreeds between Danish Landrace, Yorkshire, Duroc, Iberian and Mangalitza. Meat Sci 95:27–35

    Article  Google Scholar 

  • Zsolnai A, Tóth G, Molnár J, Stéger V, Marincs F, Jánosi A, Ujhelyi G, Koppányné Szabó E, Mohr A, Anton I, Szántó-Egész R, Sipos R, Egerszegi I, Dallmann K, Tóth P, Micsinai A, Brüssow KP, Rátky J (2013) Looking for breed differentiating SNP loci and for a SNP set for parentage testing in Mangalica. Archiv Tierzuht 56:200–207

    Google Scholar 

  • Zsolnai A (2013) Genetic studies in Mangalica via genome wide screening approach: 2nd Fatty Pig Conference. In: 2nd Fatty Pig Science and Utilization International Conference. Herceghalom, Hungary 2013.11.20-2013.11.22, p 8. http://fattypig.org/wp-content/uploads/2013/12/fatty_pig_abstract_book_web.pdf

Download references

Acknowledgments

The research was supported by the Ministry of Rural Development of the Hungarian Government (AHT number 334740).

Conflict of Interest

R. Szántó-Egész declares no conflict of interest. A. Jánosi declares no conflict of interest. A. Mohr, G. Szalai declares no conflict of interest. E. Koppányné Szabó declares no conflict of interest. A. Micsinai declares no conflict of interest. R. Sipos declares no conflict of interest. J. Rátky declares no conflict of interest. I. Anton declares no conflict of interest. A. Zsolnai declares no conflict of interest.

Ethical Approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zsolnai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szántó-Egész, R., Jánosi, A., Mohr, A. et al. Breed-Specific Detection of Mangalica Meat in Food Products. Food Anal. Methods 9, 889–894 (2016). https://doi.org/10.1007/s12161-015-0261-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-015-0261-0

Keywords

Navigation