Skip to main content
Log in

Quantification of Se-Methylselenocysteine and Its γ-Glutamyl Derivative from Naturally Se-Enriched Green Bean (Phaseolus vulgaris vulgaris) After HPLC-ESI-TOF-MS and Orbitrap MSn-Based Identification

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Orthogonal liquid chromatographic (ion exchange, reversed phase, and ion pairing) and mass spectrometric [electrospray ionization (ESI)-TOF-MS, ESI-Orbitrap MS, and inductively coupled plasma mass spectrometry (ICP-MS)] methods were addressed to identify and quantify selenium species from a naturally Se-enriched green bean (Phaseolus vulgaris vulgaris) sample after proteolytic digestion. While selenomethionine (10.1 mg/kg as Se) and selenate (9.5 mg/kg as Se) could be quantified in a straightforward way by anion exchange LC-ICP-MS technique, a multistep purification protocol was required to identify Se-methylselenocysteine and γ-glutamyl-Se-methylselenocysteine in an unambiguous way prior to quantification by using either in-source fragmentation (LC-ESI-TOF-MS) or collision-induced dissociation (LC-ESI-Orbitrap MS). Finally, Se-methylselenocysteine (2.6 mg/kg as Se) and γ-glutamyl-Se-methylselenocysteine (1.2 mg/kg as Se) could contribute to the overall selenium recovery of 72 %. This sample is the first of the Faboideae subfamily and Phaseolus ssp. to be speciated to such an extent for selenium including γ-glutamyl-Se-methylselenocysteine, a highly potential selenium species, which makes this bean material an ideal candidate for functional food purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aureli F, Ouerdane L, Bierla K, Szpunar J, Prakash NT, Cubadda F (2012) Identification of selenosugars and other low-molecular weight selenium metabolites in high-selenium cereal crops. Metallomics 4:968–978

    Article  CAS  Google Scholar 

  • Bierla K, Dernovics M, Vacchina V, Szpunar J, Bertin G, Lobinski R (2008) Determination of selenocysteine and selenomethionine in edible animal tissues by 2D size-exclusion reversed-phase HPLC-ICP MS following carbamidomethylation and proteolytic extraction. Anal Bioanal Chem 390:1789–1798

    Article  CAS  Google Scholar 

  • Bierla K, Bianga J, Ouerdane L, Szpunar J, Yiannikouris A, Lobinski R (2013) A comparative study of the Se/S substitution in methionine and cysteine in Se-enriched yeast using an inductively coupled plasma mass spectrometry (ICP MS)-assisted proteomics approach. J Proteome 87:26–39

    Article  CAS  Google Scholar 

  • Brozmanová J, Mániková D, Vlcková V, Chovanec M (2010) Selenium: a double-edged sword for defense and offence in cancer. Arch Toxicol 84:919–938

    Article  CAS  Google Scholar 

  • Cao JJ, Gregoire BR, Zeng H (2012) Selenium deficiency decreases antioxidative capacity and is detrimental to bone microarchitecture in mice. J Nutr 142:1526–1531

    Article  CAS  Google Scholar 

  • Chan Q, Afton SE, Caruso JA (2010) Selenium speciation profiles in selenite-enriched soybean (Glycine max) by HPLC-ICPMS and ESI-ITMS. Metallomics 2:147–153

    Article  CAS  Google Scholar 

  • Dernovics M, Lobinski R (2008) Characterization of the selenocysteine-containing metabolome in selenium-rich yeast. J Anal At Spectrom 23:744–751

    Article  CAS  Google Scholar 

  • Dernovics M, Stefánka Z, Fodor P (2002) Improving selenium extraction by sequential enzymatic processes for Se-speciation of selenium-enriched Agaricus bisporus. Anal Bioanal Chem 372:473–480

    Article  CAS  Google Scholar 

  • Dernovics M, Ouerdane L, Tastet L, Giusti P, Preud'homme H, Lobinski R (2006) Detection and characterization of artefact compounds during selenium speciation analysis in yeast by ICP-MS-assisted MALDI MS, oMALDI MS/MS and LC-ES-MS/MS. J Anal At Spectrom 21:703–707

    Article  CAS  Google Scholar 

  • Dernovics M, Garcia-Barrera T, Bierla K, Preud'homme H, Lobinski R (2007) Standardless identification of selenocystathionine and its gamma-glutamyl derivatives in monkeypot nuts by 3D liquid chromatography with ICP-MS detection followed by nanoHPLC-Q-TOF-MS/MS. Analyst 132:439–449

    Article  CAS  Google Scholar 

  • Dernovics M, Far J, Lobinski R (2009) Identification of anionic selenium species in Se-rich yeast by electrospray QTOF MS/MS and hybrid linear ion trap/orbitrap MSn. Metallomics 1:317–329

    Article  CAS  Google Scholar 

  • EFSA (2012) Scientific opinion on safety and efficacy of selenium in the form of organic compounds produced by the selenium-enriched yeast Saccharomyces cerevisiae NCYC R646 (Selemax 1000/2000) as feed additive for all species. EFSA J 10:2778–2794

    Google Scholar 

  • Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EAH (2006) Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134

    Article  CAS  Google Scholar 

  • Giada MDLR, Miranda MTM, Marquez UML (1998) Sulphur gamma-glutamyl peptides in mature seeds of common beans (Phaseolus vulgaris L.). Food Chem 61:177–184

    Article  CAS  Google Scholar 

  • Hart DJ, Fairweather-Tait SJ, Broadley MR, Dickinson SJ, Foot I, Knott P, McGrath SP, Mowat H, Norman K, Scott PR, Stroud JL, Tucker M, White PJ, Zhao FJ, Hurst R (2011) Selenium concentration and speciation in biofortified flour and bread: retention of selenium during grain biofortification, processing and production of Se-enriched food. Food Chem 126:1771–1778

    Article  CAS  Google Scholar 

  • Huang Y, Wang Q, Gao J, Lin Z, Banuelos GS, Yuan L, Yin X (2013) Daily dietary selenium intake in a high selenium area of Enshi, China. Nutrients 5:700–710

    Article  CAS  Google Scholar 

  • Hurst R, Armah CN, Dainty JR, Hart DJ, Teucher B, Goldson AJ, Broadley MR, Motley AK, Fairweather-Tait SJ (2010) Establishing optimal selenium status: results of a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr 91:923–931

    Article  CAS  Google Scholar 

  • Infante HG, O'Connor G, Rayman M, Wahlen R, Entwisle J, Norris P, Hearn R, Catterick T (2004) Selenium speciation analysis of selenium-enriched supplements by HPLC with ultrasonic nebulisation ICP-MS and electrospray MS/MS detection. J Anal At Spectrom 19:1529–1538

    Article  CAS  Google Scholar 

  • Infante HG, O'Connor G, Rayman M, Wahlen R, Spallholz JE, Hearn R, Catterick T (2005) Identification of water-soluble gamma-glutamyl-Se-methylselenocysteine in yeast-based selenium supplements by reversed-phase HPLC with ICP-MS and electrospray tandem MS detection. J Anal At Spectrom 20:864–870

    Article  CAS  Google Scholar 

  • Ip C, Birringer M, Block E, Kotrebai M, Tyson JF, Uden PC, Lisk DJ (2000) Chemical speciation influences comparative activity of selenium-enriched garlic and yeast in mammary cancer prevention. J Agric Food Chem 48:2062–2070

    Article  CAS  Google Scholar 

  • Kápolna E, Laursen KH, Husted S, Larsen EH (2012) Bio-fortification and isotopic labelling of Se metabolites in onions and carrots following foliar application of Se and 77Se. Food Chem 133:650–657

    Article  CAS  Google Scholar 

  • Kotrebai M, Birringer M, Tyson JF, Block E, Uden PC (1999) Identification of the principal selenium compounds in selenium-enriched natural sample extracts by ion-pair liquid chromatography with inductively coupled plasma- and electrospray ionization-mass spectrometric detection. Anal Commun 36:249–252

    Article  CAS  Google Scholar 

  • Kotrebai M, Birringer M, Tyson JF, Block E, Uden PC (2000) Selenium speciation in enriched and natural samples by HPLC-ICP-MS and HPLC-ESI-MS with perfluorinated carboxylic acid ion-pairing agents. Analyst 125:71–78

    Article  CAS  Google Scholar 

  • Kozak L, Rudnicka M, Niedzielski P (2012) Determination of inorganic selenium species in dietary supplements by hyphenated analytical system HPLC-HG-AAS. Food Anal Methods 5:1237–1243

    Article  Google Scholar 

  • Larsen EH, Lobinski R, Burger-Meyer K, Hansen M, Ruzik R, Mazurowska L, Rasmussen PH, Sloth JJ, Scholten O, Kik C (2006) Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate. Anal Bioanal Chem 385:1098–1108

    Article  CAS  Google Scholar 

  • Lippman SM, Goodman PJ, Klein EA, Parnes HL, Thompson IM, Kristal AR, Santella RM, Probstfield JL, Moinpour CM, Albanes D, Taylor PR, Minasian LM, Hoque A, Thomas SM, Crowley JJ, Gaziano JM, Stanford JL, Cook ED, Fleshner NE, Lieber MM, Walther PJ, Khuri FR, Karp DD, Schwartz GG, Ford LG, Coltman CA (2005) Designing the Selenium and Vitamin E Cancer Prevention Trial (SELECT). J Natl Cancer Inst 97:94–102

    Article  CAS  Google Scholar 

  • Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, Parnes HL, Minasian LM, Gaziano JM, Hartline JA, Parsons JK, Bearden JD III, Crawford ED, Goodman GE, Claudio J, Winquist E, Cook ED, Karp DD, Walther P, Lieber MM, Kristal AR, Darke AK, Arnold KB, Ganz PA, Santella RM, Albanes D, Taylor PR, Probstfield JL, Jagpal TJ, Crowley JJ, Meyskens FL Jr, Baker LH, Coltman CA Jr (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 301:39–51

    Article  CAS  Google Scholar 

  • McSheehy S, Yang W, Pannier F, Szpunar J, Lobinski R, Auger J, Potin-Gautier M (2000) Speciation analysis of selenium in garlic by two-dimensional high-performance liquid chromatography with parallel inductively coupled plasma mass spectrometric and electrospray tandem mass spectrometric detection. Anal Chim Acta 421:147–153

    Article  CAS  Google Scholar 

  • McSheehy S, Kelly J, Tessier L, Mester Z (2005) Identification of selenomethionine in selenized yeast using two-dimensional liquid chromatography-mass spectrometry based proteomic analysis. Analyst 130:35–37

    Article  CAS  Google Scholar 

  • Mounicou S, Dernovics M, Bierla K, Szpunar J (2009) A sequential extraction procedure for an insight into selenium speciation in garlic. Talanta 77:1877–1882

    Article  CAS  Google Scholar 

  • Nigam SN, McConnell WB (1969) Seleno amino compounds from Astragalus bisulcatus isolation and identification of gamma-l-glutamyl-Se-methyl-seleno-l-cysteine and Se-methylseleno-l-cysteine. BBA - Gen Subj 192:185–190

    Article  CAS  Google Scholar 

  • Nigam SN, McConnell WB (1973) Biosynthesis of Se-methylselenocysteine in lima beans. Phytochemistry 12:359–362

    Article  CAS  Google Scholar 

  • Ogra Y (2008) Integrated strategies for identification of selenometabolites in animal and plant samples. Anal Bioanal Chem 390:1685–1689

    Article  CAS  Google Scholar 

  • Ogra Y, Anan Y (2009) Selenometabolomics: Identification of selenometabolites and specification of their biological significance by complementary use of elemental and molecular mass spectrometry. J Anal At Spectrom 24:1477–1488

    Article  CAS  Google Scholar 

  • Ohta Y, Suzuki N, Kobayashi Y, Hirano S (2011) Rapid speciation and quantification of selenium compounds by HPLC-ICP MS using multiple standards labelled with different isotopes. Isot Environ Health Stud 47:330–340

    Article  CAS  Google Scholar 

  • Padovese R, Kina SM, Barros RMC, Borelli P, Lanfer Marquez UM (2001) Biological importance of gamma-glutamyl-S-methylcysteine of kidney bean (Phaseolus vulgaris L.). Food Chem 73:291–297

    Article  CAS  Google Scholar 

  • Pedrero Z, Madrid Y (2009) Novel approaches for selenium speciation in foodstuffs and biological specimens: a review. Anal Chim Acta 634:135–152

    Article  CAS  Google Scholar 

  • Pedrero Z, Encinar JR, Madrid Y, Camara C (2007) Identification of selenium species in selenium-enriched Lens esculenta plants by using two-dimensional liquid chromatography-inductively coupled plasma mass spectrometry and [Se-77]selenomethionine selenium oxide spikes. J Chromatogr A 1139:247–253

    Article  CAS  Google Scholar 

  • Polatajko A, Banas B, Encinar JR, Szpunar J (2005) Investigation of the recovery of selenomethionine from selenized yeast by two-dimensional LC-ICP MS. Anal Bioanal Chem 381:844–849

    Article  CAS  Google Scholar 

  • Premarathna L, McLaughlin MJ, Kirby JK, Hettiarachchi GM, Stacey S, Chittleborough DJ (2012) Selenate-enriched urea granules are a highly effective fertilizer for selenium biofortification of paddy rice grain. J Agric Food Chem 60:6037–6044

    Article  CAS  Google Scholar 

  • Rayman MP, Infante HG, Sargent M (2008) Food-chain selenium and human health: spotlight on speciation. Br J Nutr 100:238–253

    CAS  Google Scholar 

  • Smrkolj P, Germ M, Kreft I, Stibilj V (2006) Respiratory potential and Se compounds in pea (Pisum sativum L.) plants grown from Se-enriched seeds. J Exp Bot 57:3595–3600

    Article  CAS  Google Scholar 

  • Smrkolj P, Osvald M, Osvald J, Stibilj V (2007) Selenium uptake and species distribution in selenium-enriched bean (Phaseolus vulgaris L.) seeds obtained by two different cultivations. Eur Food Res Technol 225:233–237

    Article  CAS  Google Scholar 

  • Stan SD, Kar S, Stoner GD, Singh SV (2008) Bioactive food components and cancer risk reduction. J Cell Biochem 104:339–356

    Article  CAS  Google Scholar 

  • Szpunar J, Lobinski R (2002) Multidimensional approaches in biochemical speciation analysis. Anal Bioanal Chem 373:404–411

    Article  CAS  Google Scholar 

  • Taylor M, Chapman R, Beyaert R, Hernández-Sebastia C, Marsolais F (2008) Seed storage protein deficiency improves sulfur amino acid content in common bean (Phaseolus vulgaris L.): redirection of sulfur from gamma-glutamyl-S-methyl-cysteine. J Agric Food Chem 56:5647–5654

    Article  CAS  Google Scholar 

  • Thavarajah D, Vandenberg A, George GN, Pickering IJ (2007) Chemical form of selenium in naturally selenium-rich lentils (Lens culinaris L.) from Saskatchewan. J Agric Food Chem 55:7337–7341

    Article  CAS  Google Scholar 

  • Wu L, Guo X, Banuelos GS (1997) Accumulation of seleno-amino acids in legume and grass plant species grown in selenium-laden soils. Environ Toxicol Chem 16:491–497

    Article  CAS  Google Scholar 

  • Ximénez-Embún P, Alonso I, Madrid-Albarrán Y, Cámara C (2004) Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants. J Agric Food Chem 52:832–838

    Article  CAS  Google Scholar 

  • Yoshida M, Sugihara S, Inoue Y, Chihara Y, Kondo M, Miyamoto S, Sukcharoen B (2005) Composition of chemical species of selenium contained in selenium-enriched shiitake mushroom and vegetables determined by high performance liquid chromatography with inductively coupled plasma mass spectrometry. J Nutr Sci Vitaminol 51:194–199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Science Foundation of China (grant no. 40971287) and the “Strategic Priority Research Program—Climate change: carbon budget and related issues” of the Chinese Academy of Sciences (grant no. XDA05010105), and the 12th 5-year plan project of State Key Laboratory of Ore-Deposit Geochemistry, Chinese Academy of Sciences (SKLODG-ZY125-08). M. Dernovics acknowledges the financial support from the Magyary Zoltán Higher Educational Public Foundation. The authors also acknowledge the TÁMOP grants, nos. 4.2.1./B-09/1/KMR-2010-0005 and 4.2.2/B-10/1-2010-0023, and the grant ref. HH-2008-0018 from the Spanish MEC.

Conflict of Interest

Shuxun Shao declares that he has no conflict of interest. Xiubo Mi declares that he has no conflict of interest. Laurent Ouerdane declares that he has no conflict of interest. Ryszard Lobinski declares that he has no conflict of interest. Juan Francisco García-Reyes declares that he has no conflict of interest. Antonio Molina-Díaz declares that he has no conflict of interest. Andrea Vass declares that she has no conflict of interest. Mihály Dernovics declares that he has no conflict of interest. This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihály Dernovics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, S., Mi, X., Ouerdane, L. et al. Quantification of Se-Methylselenocysteine and Its γ-Glutamyl Derivative from Naturally Se-Enriched Green Bean (Phaseolus vulgaris vulgaris) After HPLC-ESI-TOF-MS and Orbitrap MSn-Based Identification. Food Anal. Methods 7, 1147–1157 (2014). https://doi.org/10.1007/s12161-013-9728-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-013-9728-z

Keywords

Navigation