Skip to main content
Log in

Physical Activity and Differential Methylation of Breast Cancer Genes Assayed from Saliva: A Preliminary Investigation

  • Original Article
  • Published:
Annals of Behavioral Medicine

Abstract

Purpose

Individuals who exercise are at lower risk for breast cancer and have better post-diagnosis outcomes. The biological mechanisms behind this association are unclear, but DNA methylation has been suggested.

Methods

We developed a composite measure of DNA methylation across 45 CpG sites on genes selected a priori. We examined the association of this measure to self-reported physical activity and objectively measured cardiovascular fitness in a sample of healthy nonsmoking adults (n = 64) in an exercise promotion intervention.

Results

Individuals who were more physically fit and who exercised more minutes per week had lower levels of DNA methylation. Those who increased their minutes of physical activity over 12 months experienced decreases in DNA methylation.

Conclusions

DNA methylation may be a mechanism linking exercise and cancer incidence and could serve as a biomarker for behavioral intervention trials. Studies with larger samples, objectively measured exercise, and more cancer-related markers are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Friedenreich CM, Thune I. A review of physical activity and prostate cancer risk. Cancer Causes Control. 2001; 12: 461-475.

    Article  PubMed  CAS  Google Scholar 

  2. Monninkhof EM, Elias SG, Vlems FA, et al. Physical activity and breast cancer: A systematic review. Epidemiol. 2007; 18: 137-157.

    Article  Google Scholar 

  3. Tardon A, Lee WJ, Delgado-Rodriquez M, et al. Leisure-time activity and lung cancer: A meta-analysis. Cancer Causes Control. 2005; 16: 389-397.

    Article  PubMed  Google Scholar 

  4. Dimeo FC, Stieglitz R, Novelli-Fischer U, Fetscher S, Keul J. Effects of physical activity on the fatigue and psychologic status of cancer patients during chemotherapy. Cancer. 1999; 85: 2273-2277.

    Article  PubMed  CAS  Google Scholar 

  5. Ibrahim EM, Al-Homaidh A. Physical activity and survival after breast cancer diagnosis: Meta-analysis of published studies. Med Oncol. 2010; 28: 753-765

    Google Scholar 

  6. Zeng H, Irwin ML, Lu L, et al. Physical activity and breast cancer survival: An epigenetic link through reduced methylation of a tumor suppressor gene L3MBTL1. Breast Cancer Res Treat. 2012; 133: 127-135.

    Article  PubMed  CAS  Google Scholar 

  7. Coyle YM. Physical activity as a negative modulator of estrogen-induced breast cancer. Cancer Causes Control. 2008; 19: 1021-1029.

    Article  PubMed  Google Scholar 

  8. Rogers CJ, Colbert LH, Greiner JW, Perkins SN, Hursting SD. Physical activity and cancer prevention: Pathways and targets for intervention. Sports Med. 2008; 38: 271-296.

    Article  PubMed  Google Scholar 

  9. Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A. 1993; 90: 11995-11999.

    Article  PubMed  CAS  Google Scholar 

  10. Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Genet. 2012; 13: 484-492.

    Article  CAS  Google Scholar 

  11. Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet. 2007; 8: 286-298.

    Article  PubMed  CAS  Google Scholar 

  12. Rodriguez-Parades M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011; 17: 330-339.

    Article  Google Scholar 

  13. Hill VK, Hesson LB, Dansranjavin T, et al. Identification of 5 novel genes methylated in breast and other epithelial cancers. Mol Cancer. 2010; 9: 51.

    Article  PubMed  Google Scholar 

  14. Coyle YM, Xie XJ, Lewis CM, Bu D, Milchgrub S, Euhus DM. Role of physical activity in modulating breast cancer risk as defined by APC and RASSF1A promoter hypermethylation in nonmalignant breast tissue. Cancer Epidemiol Biomarkers Prev. 2007; 16: 192-196.

    Article  PubMed  CAS  Google Scholar 

  15. Veeck J, Esteller M. Breast cancer epigenetics: From DNA methylation to microRNAs. J Mammary Gland Biol Neoplasia. 2010; 15: 5-17.

    Article  PubMed  Google Scholar 

  16. Gu YM, Tan JX, Lu XW, Ding Y, Han X, Sun YJ. BCSG1 methylation status and BCSG1 expression in breast tissues derived from Chinese women with breast cancer. Oncology. 2008; 74: 61-68.

    Article  PubMed  CAS  Google Scholar 

  17. Slattery ML, Curtin K, Sweeney C, et al. Diet and lifestyle factor associations with CpG island methylator phenotype and BRAF mutations in colon cancer. Int J Cancer. 2006; 120: 656-663.

    Article  Google Scholar 

  18. Go VL, Wong DA, Butrum R. Diet, nutrition and cancer prevention: Where are we going from here? J Nutr. 2001; 131(11 Suppl): 3121S-3126S.

    PubMed  CAS  Google Scholar 

  19. Shames DS, Minna JD, Gazdar AF. DNA methylation in health, disease, and cancer. Curr Mol Med. 2007; 7: 85-102.

    Article  PubMed  CAS  Google Scholar 

  20. Brait M, Ford JG, Papaiahgari S, et al. Association between lifestyle factors and CpG island methylation in a cancer-free population. Cancer Epidemiol Biomarkers Prev. 2009; 18: 2984-2991.

    Article  PubMed  CAS  Google Scholar 

  21. Nakajima K, Takeoka M, Mori M, et al. Exercise effects on methylation of ASC gene. Int J Sports Med. 2010; 31: 671-675.

    Article  PubMed  CAS  Google Scholar 

  22. Stehlik C, Lee SH, Dorfleutner A, Stassinopoulos A, Sagara J, Reed JC. Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol. 2003; 171: 6145-6163.

    Google Scholar 

  23. Zhang FF, Cardarelli R, Carroll J, et al. Physical activity and global genomic DNA methylation in a cancer-free population. Epigenetics. 2011; 6: 293-299.

    Article  PubMed  CAS  Google Scholar 

  24. McBride CM, Koehly LM, Sanderson SC, Kaphingst KA. The behavioral response to personalized genetic information: Will genetic risk profiles motivate individuals and families to choose more healthful behaviors? Annu Rev Public Health. 2010; 31: 89-103.

    Article  PubMed  Google Scholar 

  25. Blair SN, Haskell WL, Ho P, et al. Assessment of habitual physical activity by a 7-day recall in a community survey and controlled experiments. Am J Epidemiol. 1985; 122: 794-804.

    PubMed  CAS  Google Scholar 

  26. Magnan RE, Nilsson R, Marcus BH, Ciccolo JT, Bryan AD. A transdisciplinary approach to the selection of moderators of an exercise promotion intervention: Baseline data and rationale for Colorado STRIDE. J Behav Med. 2011; Epub ahead of print. Retrieved from http://www.springerlink.com/content/9244355kn500061k/.

  27. Bock BC, Marcus BH, Pinto BM, Forsyth LH. Maintenance of physical activity following an individualized motivationally tailored intervention. Ann Behav Med. 2001; 23(2): 79-87.

    Article  PubMed  CAS  Google Scholar 

  28. Bryan AD, Magnan RE, Caldwell Hooper AE, Ciccolo JT, Marcus B, Hutchison KE. Colorado STRIDE (COSTRIDE): Testing genetic and physiological moderators of response to an intervention to increase physical activity. Under Review.

  29. Dishman RK, Washburn RA, Schoeller DA. Measurement of physical activity. Quest. 2001; 53: 295-309.

    Article  Google Scholar 

  30. Pereira MA, FitzerGerald SJ, Gregg EW, et al. A collection of physical activity questionnaires for health-related research. Med Sci Sports Exerc. 1997; 29(6 Suppl): S1-S205.

    PubMed  CAS  Google Scholar 

  31. Christou DD, Gentile CL, DeSouza CA, Seals DR, Gates PE. Fatness is a better predictor of cardiovascular disease risk factor profile than aerobic fitness in healthy men. Circulation. 2005; 111: 1904-1914.

    Article  PubMed  Google Scholar 

  32. Talens RP, Boomsma DI, Tobi EW, et al. Variation, patterns, and temporal stability of DNA methylation: Considerations for epigenetic epidemiology. FASEB J. 2010; 24: 3135-3144.

    Article  PubMed  CAS  Google Scholar 

  33. Ally SM, Al-Ghnaniem R, Pufulete M. The relationship between gene-specific DNA methylation in leukocytes and normal colorectal mucosa in subjects with and without colorectal tumors. Cancer Epidemiol Biomarkers Prev. 2009; 18: 922-928.

    Article  PubMed  CAS  Google Scholar 

  34. Byun HM, Siegmund KD, Pan F, Berman BP, Laird PW. Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum Mol Genet. 2009; 18: 4808-4817.

    Article  PubMed  CAS  Google Scholar 

  35. Al-Moghrabi N, Al-Qasem AJ, Aboussekhra A. Methylation-related mutations in the BRCA1 promoter in peripheral blood cells from cancer-free women. Int J Oncol. 2011; 39: 129-135.

    PubMed  CAS  Google Scholar 

  36. Brennan K, Garcia-Closas M, Orr N, et al. Intragenic ATM methylation in peripheral blood DNA as a biomarker of breast cancer risk. Cancer Res. 2012; 72: 2304-2313.

    Article  PubMed  CAS  Google Scholar 

  37. Snell C, Krypuy M, Wong EM, Loughrey MB, Dobrovic A. BRCA1 promoter methylation in peripheral blood DNA of mutation negative familial breast cancer patients with a BRCA1 tumour phenotype. Breast Cancer Res. 2008; 10: R12.

    Article  PubMed  Google Scholar 

  38. Galetzka D, Hansmann T, El Hajj N, et al. Monozygotic twins discordant for constitutive BRCA1 promoter methylation, childhood cancer and secondary cancer. Epigenetics. 2012; 7: 47-54.

    Article  PubMed  CAS  Google Scholar 

  39. Weisenberger DJ, den Berg DV, Pan F, Berman BP, Laird PW. Comprehensive DNA methylation analysis on the Illumina Infinium assay platform. Technical report. San Diego: Illumina, Inc; 2008.

    Google Scholar 

  40. Westfall PH, Young SS. Resampling-based multiple testing: Examples and methods for p-value adjustment. New York: Wiley; 1993.

    Google Scholar 

  41. Wray NR, Goddard ME, Visscher PM. Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res. 2007; 17: 1520-1528.

    Article  PubMed  CAS  Google Scholar 

  42. Cassinotti E, Melson J, Liggett T, et al. DNA methylation patterns in blood of patients with colorectal cancer and adenomatous colorectal polyps. Int J Cancer. 2012; 131: 1153-1157.

    Article  PubMed  CAS  Google Scholar 

  43. Viet CT, Schmidt BL. Methylation array analysis of preoperative and postoperative saliva DNA in oral cancer patients. Cancer Epidemiol Biomarkers Prev. 2008; 17: 3603-3611.

    Article  PubMed  CAS  Google Scholar 

  44. NCI. What you need to know about breast cancer. 2009; http://www.cancer.gov/cancertopics/wyntk/breast.

  45. Lee DC, Artero EG, Sui X, Blair SN. Mortality trends in the general population: The importance of cardiorespiratory fitness. J Psychopharmacol (Oxf). 2010; 24(4 Suppl): 27-35.

    Article  CAS  Google Scholar 

  46. Swain DP, Franklin BA. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol. 2006; 97: 141-147.

    Article  PubMed  Google Scholar 

  47. Prior SJ, Hagberg JM, Paton CM, et al. DNA sequence variation in the promoter region of the VEGF gene impacts VEGF gene expression and maximal oxygen consumption. Am J Physiol Heart Circ Physiol. 2006; 290: H1848-H1855.

    Article  PubMed  CAS  Google Scholar 

  48. McBride CM, Bryan AD, Bray MS, Swan GE, Green ED. Health behavior change: Can genomics improve behavioral adherence? Am J Public Health. 2012; 102: 401-405.

    Article  PubMed  Google Scholar 

  49. Heijmans BT, Mill J. Commentary: The seven plagues of epigenetic epidemiology. Int J Epidemiol. 2012; 41: 74-78.

    Article  PubMed  Google Scholar 

  50. Faulk C, Dolinoy DC. Timing is everything: The when and how of environmentally induced changes in the epigenome of animals. Epigenetics. 2011; 6: 791-797.

    Article  PubMed  CAS  Google Scholar 

  51. Milagro FI, Campion J, Cordero P, et al. A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. FASEB J. 2011; 25: 1378-1389.

    Article  PubMed  CAS  Google Scholar 

  52. Friedenreich CM. Physical activity and cancer prevention: From observational to intervention research. Cancer Epidemiol Biomarkers Prev. 2001; 10: 287-301.

    PubMed  CAS  Google Scholar 

  53. Gomez-Pinilla F, Zhuang Y, Feng J, Ying Z, Fan G. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur J Neurosci. 2011; 33: 383-390.

    Article  PubMed  CAS  Google Scholar 

  54. Ordovas JM, Smith CE. Epigenetics and cardiovascular disease. Nat Rev Cardiol. 2010; 7: 510-519.

    Article  PubMed  CAS  Google Scholar 

  55. Jurkowska RZ, Jorkowski TP, Jeltsch A. Structure and function of mammalian DNA methyltransferases. ChemBioChem. 2011; 24: 206-222.

    Article  Google Scholar 

Download references

Conflict of Interest

None of the authors have any conflicts of interest related to this work.

Funding

This research was supported by a grant from the National Cancer Institute (CA RO1 CA109858) to the first author, a grant from the National Center for Research Resources (M01-RR00051) to the University of Colorado Boulder, and research funds provided to the first and last authors by the University of New Mexico and the Mind Research Network, both in Albuquerque, New Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela D. Bryan Ph.D..

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 62 kb)

About this article

Cite this article

Bryan, A.D., Magnan, R.E., Hooper, A.E.C. et al. Physical Activity and Differential Methylation of Breast Cancer Genes Assayed from Saliva: A Preliminary Investigation. ann. behav. med. 45, 89–98 (2013). https://doi.org/10.1007/s12160-012-9411-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12160-012-9411-4

Keywords

Navigation