Skip to main content

Advertisement

Log in

Effects of Initial Age Structure of Managed Norway Spruce Forest Area on Net Climate Impact of Using Forest Biomass for Energy

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

We investigated how the initial age structure of a managed, middle boreal (62°N), Norway spruce-dominated (Picea abies L. Karst.) forest area affects the net climate impact of using forest biomass for energy. The model-based analysis used a gap-type forest ecosystem model linked to a life cycle assessment (LCA) tool. The net climate impact of energy biomass refers to the difference in annual net CO2 exchange between the biosystem using forest biomass (logging residues from final felling) and the fossil (reference) system using coal. In the simulations over the 80-year period, the alternative initial age structures of the forest areas were (i) skewed to the right (dominated by young stands), (ii) normally distributed (dominated by middle-aged stands), (iii) skewed to the left (dominated by mature stands), and (iv) evenly distributed (same share of different age classes). The effects of management on net climate impacts were studied using current recommendations as a baseline with a fixed rotation period of 80 years. In alternative management scenarios, the volume of the growing stock was maintained 20% higher over the rotation compared to the baseline, and/or nitrogen fertilization was used to enhance carbon sequestration. According to the results, the initial age structure of the forest area affected largely the net climate impact of using energy biomass over time. An initially right-skewed age structure produced the highest climate benefits over the 80-year simulation period, in contrast to the left-skewed age structure. Furthermore, management that enhanced carbon sequestration increased the potential of energy biomass to replace coal, reducing CO2 emissions and enhancing climate change mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457

    Article  CAS  PubMed  Google Scholar 

  2. Malmsheimer RW, Bowyer JL, Fried JS et al (2011) Managing forests because carbon matters: integrating energy, products, and land management policy. J For 109:S7–S51

    Google Scholar 

  3. Ter-Mikaelian M, McKechnie J, Colombo S, Chen J, MacLean H (2011) The carbon neutrality assumption for forest bioenergy: a case study for northwestern Ontario. Forest Chronicle 87:644–652

    Article  Google Scholar 

  4. Helin T, Sokka L, Soimakallio S, Pingoud K, Pajula T (2013) Approaches for inclusion of forest carbon cycle in life cycle assessment—a review. Glob Chang Biol Bioenergy 5:475–486

    Article  CAS  Google Scholar 

  5. Mitchell SR, Harmon ME, O’Connell KEB (2012) Carbon debt and carbon sequestration parity in forest bioenergy production. Glob Chang Biol Bioenergy 4(6):818–827

    Article  CAS  Google Scholar 

  6. McKechnie J, Colombo S, MacLean HL (2014) Forest carbon accounting methods and the consequences of forest bioenergy for national greenhouse gas emissions inventories. Environ Sci Policy 44:164–173

    Article  Google Scholar 

  7. Routa J, Kellomäki S, Peltola H (2012) Impacts of intensive management and landscape structure on timber and energy wood production and net CO2 emissions from energy wood use of Norway spruce. Bioenergy Res 5:106–123

    Article  Google Scholar 

  8. Garcia-Gonzalo J, Peltola H, Zubizarreta Gerendiain A, Kellomäki S (2007) Impacts of forest landscape structure and management on timber production and carbon stocks in the boreal forest ecosystem under changing climate. For Ecol Manag 241:243–257

    Article  Google Scholar 

  9. Sathre R, Gustavsson L (2011) Time-dependent climate benefits of using forest residues to substitute fossil fuels. Biomass Bioenergy 35:2506–2516

    Article  Google Scholar 

  10. Lundmark T, Bergh J, Hofer P et al (2014) Potential roles of Swedish forestry in the context of climate change mitigation. Forests 5(4):557–578

    Article  Google Scholar 

  11. Kilpeläinen A, Torssonen P, Strandman H, Kellomäki S, Asikainen A, Peltola H (2016) Net climate impacts of forest biomass production and utilization in managed boreal forests. Glob Chang Biol Bioenergy 8:307–316

    Article  Google Scholar 

  12. Cherubini F, Guest G, Strømman AH (2013) Bioenergy from forestry and changes in atmospheric CO2: reconciling single stand and landscape level approaches. J Environ Manag 129:292–301

    Article  CAS  Google Scholar 

  13. Zanchi G, Pena N, Bird N (2012) Is woody bioenergy carbon neutral? A comparative assessment of emissions from consumption of woody bioenergy and fossil fuel. Glob Chang Biol Bioenergy 4:761–772

    Article  CAS  Google Scholar 

  14. Levasseur A, Lesage P, Margni M, Samson R (2013) Biogenic carbon and temporary storage addressed with dynamic life cycle assessment. J Ind Ecol 17:117–128

    Article  CAS  Google Scholar 

  15. Routa J, Kellomäki S, Kilpeläinen A, Peltola H, Strandman H (2011a) Effects of forest management on the carbon dioxide emissions of wood energy in integrated production of timber and energy biomass. Glob Chang Biol Bioenergy 3:483–497

    Article  Google Scholar 

  16. Routa J, Kellomäki S, Peltola H, Asikainen A (2011b) Impacts of thinning and fertilization on timber and energy wood production in Norway spruce and Scots pine: scenario analyses based on ecosystem model simulations. Forestry 84:159–175

    Article  Google Scholar 

  17. Pyörälä P, Peltola H, Strandman H, Kilpeläinen A, Asikainen A, Jylhä K, Kellomäki S (2014) Effects of management on economic profitability of forest biomass production and carbon neutrality of bioenergy use in Norway spruce stands under the changing climate. Bioenergy Research 7:279–294

    Article  Google Scholar 

  18. Repo A, Tuovinen JP, Liski J (2015) Can we produce carbon and climate neutral forest bioenergy? Glob Chang Biol Bioenergy 7:253–262

    Article  CAS  Google Scholar 

  19. Sathre R, Gustavsson L (2012) Time-dependent radiative forcing effects of forest fertilization and biomass substitution. Biogeochemistry 109:203–218

    Article  CAS  Google Scholar 

  20. Haus S, Gustavsson L, Sathre R (2014) Climate mitigation comparison of woody biomass systems with the inclusion of land-use in the reference fossil system. Biomass Bioenergy 65:136–144

    Article  CAS  Google Scholar 

  21. Torssonen P, Kilpeläinen A, Strandman H, Kellomäki S, Jylhä K, Asikainen A, Peltola H (2016) Effects of climate change and management on net climate impacts of production and utilization of energy biomass in Norway spruce with stable age-class distribution. Glob Chang Biol Bioenergy 8:419–427

    Article  Google Scholar 

  22. Nurmi J (1993) Small-sized trees above ground biomass heating value (Pienikokoisten puiden maanpäällisen biomassan lämpöarvo). Helsinki. Acta Forestalia Fennica 236:30p (in Finnish)

  23. Nurmi J (1997) Heating values of mature trees. Acta Forestalia Fennica 256:28p

  24. Energy Statistics Yearbook (2011). Statistics Finland. Helsinki, Finland.

  25. Ramaswamy W, Boucher O, Haigh J et al (2001) Radiative forcing of climate change. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 349–416

    Google Scholar 

  26. Foster P, Ramaswamy P, Artaxo T, Berntsen R, Betts DW et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 130–234

    Google Scholar 

  27. Kellomäki S, Peltola H, Nuutinen T, Korhonen KT, Strandman H (2008) Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philos Trans R Soc B363:2341–2351

    Google Scholar 

  28. Kilpeläinen A, Alam A, Strandman H, Kellomäki S (2011) Life cycle assessment tool for estimating net CO2 exchange of forest production. Glob Chang Biol Bioenergy 3:461–471

    Article  Google Scholar 

  29. Kellomäki S, Strandman H, Nuutinen T, Peltola H, Korhonen KT, Väisänen H (2005) Adaptation of forest ecosystems, forest and forestry to climate change. FINADAPT. Working Paper 4. Finnish Environment Institute Mimeographs 334. Helsinki.

  30. Mäkipää R, Karjalainen T, Pussinen A, Kukkola M, Kellomäki S, Mälkönen E (1998) Applicability of a forest simulation model for estimating effects of nitrogen deposition on a forest ecosystem: test of the validity of a gap-type model. For Ecol Manag 108:239–250

    Article  Google Scholar 

  31. Alam A, Kellomäki S, Kilpeläinen A, Strandman H (2013) Effects of stump extraction on the carbon sequestration in Norway spruce forest ecosystems under varying thinning regimes with implications for fossil fuel substitution. Glob Chang Biol Bioenergy 5:445–458

    Article  Google Scholar 

  32. Venäläinen A, Tuomenvirta H, Pirinen P, Drebs A (2005) A basic Finnish climate data set 1961–2000—description and illustrations. Reports of the Finnish Meteorological Institute 5:27p

  33. Aalto J, Pirinen P, Heikkinen J, Venäläinen A (2012) Spatial interpolation of monthly climate data for Finland: comparing the performance of kriging and generalized additive models. Theor Appl Climatol 112:99–111

    Article  Google Scholar 

  34. Äijälä O, Koistinen A, Sved J, Vanhatalo K, Väisänen P (2014) Recommendations for forest management in Finland. (in Finnish: Hyvän metsänhoidon suositukset – METSÄNHOITO), Forestry Development Centre Tapio publications. 264 p. (in Finnish)

  35. Äijälä O, Kuusinen M, Koistinen A (2010) Recommendations for management and harvesting of energy wood. (in Finnish: Hyvän metsänhoidon suositukset energiapuun korjuuseen ja kasvatukseen), Forestry Development Centre Tapio publications. 32 p. (in Finnish)

  36. Schlamadinger B, Spitzer J, Kohlmaier GH, Ludeke M (1995) Carbon balance of bioenergy from logging residues. Biomass Bioenergy 8:221–234

    Article  Google Scholar 

  37. Repo A, Tuomi M, Liski J (2011) Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues. Glob Chang Biol Bioenergy 3:107–115

    Article  CAS  Google Scholar 

  38. Zetterberg L, Chen D (2014) The time aspect of bioenergy—climate impacts of solid biofuels due to carbon dynamics. Glob Chang Biol Bioenergy 7:785–796

    Article  Google Scholar 

  39. Ter-Mikaelian M, Colombo S, Chen J (2015) The burning question: does forest bioenergy reduce carbon emissions. A review of common misconceptions about forest carbon accounting. J For 113:57–68

    Google Scholar 

  40. Gaudreault C, Miner R (2015) Temporal aspects in evaluating the greenhouse gas mitigation benefits of using residues from forest products manufacturing facilities for energy production. J Ind Ecol 19:994–1007

    Article  CAS  Google Scholar 

  41. Mika AM, Keeton WS (2015) Net carbon fluxes at stand and landscape scales from wood bioenergy harvests in the US Northeast. Glob Chang Biol Bioenergy 7:438–454

    Article  CAS  Google Scholar 

  42. Gustavsson L, Haus S, Ortiz CA, Sathre R, Truong NL (2015) Climate effects of bioenergy from forest residues in comparison to fossil energy. Appl Energy 138:36–50

    Article  Google Scholar 

  43. Sedjo RA, Tian X (2012) An investigation of the carbon neutrality of wood bioenergy. J Environ Prot 3:989–1000

    Article  Google Scholar 

  44. Sathre R, Gustavsson L, Bergh J (2010) Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization. Biomass Bioenergy 34:572–581

    Article  CAS  Google Scholar 

  45. Mälkönen E (1976) Effect of whole-tree harvesting on soil fertility. Silva Fennica 10:157–164

    Article  Google Scholar 

  46. Kuusinen M, Ilvesniemi H (eds) (2008) Energiapuun korjuun ympäristövaikutukset, tutkimusraportti. Tapion ja Metlan julkaisuja, Helsinki, Finland, 74 p. (in Finnish)

  47. Jacobson S, Kukkola M, Mälkönen E, Tveite B (2000) Impact of whole-tree harvesting and compensatory fertilization on growth of coniferous thinning stands. For Ecol Manag 129:41–51

    Article  Google Scholar 

  48. Mäkipää R, Karjalainen T, Pussinen A, Kukkola M (1998) Effects of nitrogen fertilization on carbon accumulation in boreal forests: model computations compared with the results of long-term fertilization experiments. Chemosphere 36:1155–1160

    Article  Google Scholar 

Download references

Acknowledgements

This work was mainly funded by the METY project (A32172) under the European Regional Development Fund. Its finalization was also supported by the FORBIO project (14970), funded by the Strategic Research Council of Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kilpeläinen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilpeläinen, A., Strandman, H., Grönholm, T. et al. Effects of Initial Age Structure of Managed Norway Spruce Forest Area on Net Climate Impact of Using Forest Biomass for Energy. Bioenerg. Res. 10, 499–508 (2017). https://doi.org/10.1007/s12155-017-9821-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-017-9821-z

Keywords

Navigation