Skip to main content
Log in

Management Practices of Miscanthus × giganteus Strongly Influence Soil Properties and N2O Emissions Over the Long Term

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Cropping practices of Miscanthus × giganteus, a promising energy crop, can influence C and N cycles and therefore potentially affect N2O emissions. They may vary in harvesting date, either early (EH) or late harvest (LH), and the fertiliser form (NH4 or NO3). In this study, we combined a long-term field experiment and simulations with the STICS model to investigate the effect of these practices on soil parameters, N2O emissions and the contribution of nitrification and denitrification. Daily N2O fluxes and soil parameters were measured during the 4-month period following fertilisation in 2014 and 2015. Mean cumulative N2O emissions were markedly higher in LH than EH (4.21 vs. 0.89 kg N2O–N ha−1 year−1) but did not differ significantly between fertiliser forms or years. The difference was mainly attributed to the higher soil water-filled pore space (WFPS) observed in LH (80 vs. 56 % in EH) which resulted itself from the leaf mulch present in LH and not in EH. WFPS explained 67 % of the variance of N2O emissions. The large decrease in pH observed after NH4 fertilisation stimulated N2O emissions probably through less-efficient reduction of N2O to N2 as simulated by STICS. Model outputs suggest a large contribution of nitrification in EH and a dominant contribution of denitrification in LH. Our study highlights the crucial impact of management practises on N2O emissions in Miscanthus crops through changes in physico-chemical parameters and soil processes on the short and long term and brings knowledge required to maximise the benefits of bioenergy crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. EurObserv ’ ER, Estimates of the renewable energy share in gross final energy consumption for the year 2014 www.eurobserver.org, 2015

  2. Allen B, Kretschmer B, Baldock D et al (2014) Space for energy crops–assessing the potential contribution to Europe’s energy future. Report produced for bird life Europe, European environmental bureau and Transport & Environment. IEEP, London

    Google Scholar 

  3. Bessou C, Ferchaud F, Gabrielle B, Mary B (2011) Biofuels, greenhouse gases and climate change. A review. Agron Sustain Dev 31:1–79. doi:10.1051/agro/2009039

    Article  CAS  Google Scholar 

  4. Boehmel C, Lewandowski I, Claupein W (2008) Comparing annual and perennial energy cropping systems with different management intensities. Agric Syst 96:224–236. doi:10.1016/j.agsy.2007.08.004

    Article  Google Scholar 

  5. Cadoux S, Ferchaud F, Demay C et al (2014) Implications of productivity and nutrient requirements on greenhouse gas balance of annual and perennial bioenergy crops. GCB Bioenergy 6:425–438. doi:10.1111/gcbb.12065

    Article  CAS  Google Scholar 

  6. Don A, Osborne B, Hastings A et al (2012) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. Glob Change Biol Bioenergy 4:372–391. doi:10.1111/j.1757-1707.2011.01116.x

    Article  CAS  Google Scholar 

  7. Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30. doi:10.1016/j.biombioe.2003.10.005

    Article  Google Scholar 

  8. Ferchaud F, Vitte G, Mary B (2016) Changes in soil carbon stocks under perennial and annual bioenergy crops. GCB Bioenergy 8:290–306. doi:10.1111/gcbb.12249

    Article  CAS  Google Scholar 

  9. Poeplau C, Don A (2014) Soil carbon changes under Miscanthus driven by C4 accumulation and C3 decompostion – toward a default sequestration function. GCB Bioenergy 6:327–338. doi:10.1111/gcbb.12043

    Article  CAS  Google Scholar 

  10. IPCC (2007) Climate change: the physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York

    Google Scholar 

  11. Smith CM, David MB, Mitchell CA et al (2013) Reduced nitrogen losses after conversion of row crop agriculture to perennial biofuel crops. J Environ Qual 42. doi:10.2134/jeq2012.0210

  12. Oates LG, Duncan DS, Gelfand I et al (2016) Nitrous oxide emissions during establishment of eight alternative cellulosic bioenergy cropping systems in the North Central United States. GCB Bioenergy 8:539–549. doi:10.1111/gcbb.12268

    Article  CAS  Google Scholar 

  13. Gauder M, Butterbach-Bahl K, Graeff-Hönninger S et al (2012) Soil-derived trace gas fluxes from different energy crops—results from a field experiment in Southwest Germany. Glob Change Biol Bioenergy 4:289–301. doi:10.1111/j.1757-1707.2011.01135.x

    Article  CAS  Google Scholar 

  14. Davis SC, Parton WJ, Dohleman FG et al (2010) Comparative biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low greenhouse gas emissions in a Miscanthus × giganteus agro-ecosystem. Ecosystems 13:144–156. doi:10.1007/s10021-009-9306-9

    Article  CAS  Google Scholar 

  15. Lewandowski I, Clifton-Brown JC, Andersson B et al (2003) Environment and harvest time affects the combustion qualities of genotypes. Agron J 95:1274. doi:10.2134/agronj2003.1274

    Article  Google Scholar 

  16. Meehan PG, Finnan JM, Mc Donnell KP (2013) The effect of harvest date and harvest method on the combustion characteristics of Miscanthus × giganteus. GCB Bioenergy 5:487–496. doi:10.1111/gcbb.12003

    Article  Google Scholar 

  17. Roncucci N, Nassi O, Di Nasso N, Tozzini C et al (2014) Miscanthus × giganteus nutrient concentrations and uptakes in autumn and winter harvests as influenced by soil texture, irrigation and nitrogen fertilization in the Mediterranean. GCB Bioenergy 7:1009–1018. doi:10.1111/gcbb.12209

    Article  Google Scholar 

  18. Strullu L, Cadoux S, Preudhomme M et al (2011) Biomass production and nitrogen accumulation and remobilisation by Miscanthus × giganteus as influenced by nitrogen stocks in belowground organs. Field Crop Res 121:381–391. doi:10.1016/j.fcr.2011.01.005

    Article  Google Scholar 

  19. Amougou N, Bertrand I, Cadoux S, Recous S (2012) Miscanthus × giganteus leaf senescence, decomposition and C and N inputs to soil. Glob Change Biol Bioenergy 4:698–707. doi:10.1111/j.1757-1707.2012.01192.x

    Article  CAS  Google Scholar 

  20. Jørgensen U (2011) Benefits versus risks of growing biofuel crops: the case of Miscanthus. Curr Opin Environ Sustain 3:24–30. doi:10.1016/j.cosust.2010.12.003

    Article  Google Scholar 

  21. Cadoux S, Riche AB, Yates NE, Machet J-M (2012) Nutrient requirements of Miscanthus × giganteus: conclusions from a review of published studies. Biomass Bioenergy 38:14–22. doi:10.1016/j.biombioe.2011.01.015

    Article  CAS  Google Scholar 

  22. Strullu L, Ferchaud F, Yates N et al (2015) Multisite yield gap analysis of Miscanthus × giganteus using the STICS model. BioEnergy Res 8:1735–1749. doi:10.1007/s12155-015-9625-y

    Article  Google Scholar 

  23. Conen F, Dobbie KE, Smith KA (2000) Predicting N2O emissions from agricultural land through related soil parameters. Glob Chang Biol 6:417–426. doi:10.1046/j.1365-2486.2000.00319.x

    Article  Google Scholar 

  24. Gu J, Nicoullaud B, Rochette P et al (2013) A regional experiment suggests that soil texture is a major control of N2O emissions from tile-drained winter wheat fields during the fertilization period. Soil Biol Biochem 60:134–141. doi:10.1016/j.soilbio.2013.01.029

    Article  CAS  Google Scholar 

  25. Smith KA, Thomson PE, Clayton H et al (1998) Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmos Environ 32:3301–3309. doi:10.1016/S1352-2310(97)00492-5

    Article  CAS  Google Scholar 

  26. Wijler J, Delwiche CC (1954) Investigations on the denitrifying process in soil. Plant Soil 5:155–169

    Article  CAS  Google Scholar 

  27. Behnke GD, David MB, Voigt TB (2012) Greenhouse gas emissions, nitrate leaching, and biomass yields from production of Miscanthus × giganteus in Illinois, USA. Bioenerg Res 5:801–813. doi:10.1007/s12155-012-9191-5

    Article  CAS  Google Scholar 

  28. Drewer J, Finch JW, Lloyd CR et al (2012) How do soil emissions of N2O, CH4 and CO2 from perennial bioenergy crops differ from arable annual crops? Glob Change Biol Bioenergy 4:408–419. doi:10.1111/j.1757-1707.2011.01136.x

    Article  CAS  Google Scholar 

  29. Jørgensen RN, Jørgensen BJ, Nielsen NE et al (1997) N2O emission from energy crop fields of Miscanthusgiganteus” and winter rye. Atmos Environ 31:2899–2904. doi:10.1016/S1352-2310(97)00128-3

    Article  Google Scholar 

  30. Roth B, Finnan JM, Jones MB et al (2015) Are the benefits of yield responses to nitrogen fertilizer application in the bioenergy crop Miscanthus × giganteus offset by increased soil emissions of nitrous oxide? GCB Bioenergy 7:145–152. doi:10.1111/gcbb.12125

    Article  CAS  Google Scholar 

  31. Hamelin L, Jorgensen U, Petersen BM et al (2012) Modelling the carbon and nitrogen balances of direct land use changes from energy crops in Denmark: a consequential life cycle inventory. GCB Bioenergy 4:889–907. doi:10.1111/j.1757-1707.2012.01174.x

    Article  CAS  Google Scholar 

  32. Bouwman AF, Boumans LJM, Batjes NH (2002) Emissions of N2O and NO from fertilized fields: summary of available measurement data. Glob Biogeochem Cycles 16. doi:10.1029/2001GB001811

  33. Lebender U, Senbayram M, Lammel J, Kuhlmann H (2014) Impact of mineral N fertilizer application rates on N2O emissions from arable soils under winter wheat. Nutr Cycl Agroecosyst 100:111–120. doi:10.1007/s10705-014-9630-0

    Article  CAS  Google Scholar 

  34. Casler MD, Vermerris W, Dixon RA (2015) Replication concepts for bioenergy research experiments. Bioenerg Res 8:1–16. doi:10.1007/s12155-015-9580-7

    Article  CAS  Google Scholar 

  35. Clemens J, Schillinger MP, Goldbach H, Huwe B (1999) Spatial variability of N2O emissions and soil parameters of an arable silt loam—a field study. Biol Fertil Soils 28:403–406. doi:10.1007/s003740050512

    Article  CAS  Google Scholar 

  36. Yates TT, Si BC, Farrell RE, Pennock DJ (2006) Probability distribution and spatial dependence of nitrous oxide emission. Soil Sci Soc Am J 70:753. doi:10.2136/sssaj2005.0214

    Article  CAS  Google Scholar 

  37. Bessou C, Mary B, Léonard J et al (2010) Modelling soil compaction impacts on nitrous oxide emissions in arable fields. Eur J Soil Sci 61:348–363. doi:10.1111/j.1365-2389.2010.01243.x

    Article  CAS  Google Scholar 

  38. Rochette P, Eriksen-Hamel NS (2008) Chamber measurements of soil nitrous oxide flux: are absolute values reliable? Soil Sci Soc Am J 72:331. doi:10.2136/sssaj2007.0215

    Article  CAS  Google Scholar 

  39. Rüdiger C, Western AW, Walker JP et al (2010) Towards a general equation for frequency domain reflectometers. J Hydrol 383:319–329. doi:10.1016/j.jhydrol.2009.12.046

    Article  Google Scholar 

  40. Brisson N, Gary C, Justes E et al (2003) An overview of the crop model STICS. Eur J Agron 18:309–332. doi:10.1016/S1161-0301(02)00110-7

    Article  Google Scholar 

  41. Brisson N, Mary B, Ripoche D et al (1998) STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agron Sustain Dev 18. doi:10.1051/agro:19980501

  42. Coucheney E, Buis S, Launay M et al (2015) Accuracy, robustness and behavior of the STICS soil–crop model for plant, water and nitrogen outputs: evaluation over a wide range of agro-environmental conditions in France. Environ Model Softw 64:177–190. doi:10.1016/j.envsoft.2014.11.024

    Article  Google Scholar 

  43. Strullu L, Beaudoin N, de Atauri IGC, Mary B (2014) Simulation of biomass and nitrogen dynamics in perennial organs and shoots of Miscanthus × giganteus using the STICS model. Bioenerg Res 7:1253–1269. doi:10.1007/s12155-014-9462-4

    Article  CAS  Google Scholar 

  44. Domeignoz-Horta LA, Spor A, Bru D et al (2015) The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system. Front Microbiol. doi:10.3389/fmicb.2015.00971

    PubMed  PubMed Central  Google Scholar 

  45. Grundmann G, Rolston DE (1987) A water function approximation to degree of Anaerobiosis associated with denitrification. Soil Sci 144:437–441. doi:10.1097/00010694-198712000-00008

    Article  CAS  Google Scholar 

  46. Davis MP, David MB, Voigt TB, Mitchell CA (2014) Effect of nitrogen addition on Miscanthus × giganteus yield, nitrogen losses, and soil organic matter across five sites. GCB Bioenergy 7:1222–1231. doi:10.1111/gcbb.12217

    Article  Google Scholar 

  47. Barton L, Wolf B, Rowlings D et al (2015) Sampling frequency affects estimates of annual nitrous oxide fluxes. Sci Rep. doi:10.1038/srep15912

    Google Scholar 

  48. Bussière F, Cellier P (1994) Modification of the soil temperature and water content regimes by a crop residue mulch: experiment and modelling. Agric For Meteorol 68:1–28. doi:10.1016/0168-1923(94)90066-3

    Article  Google Scholar 

  49. Cook HF, Valdes GSB, Lee HC (2006) Mulch effects on rainfall interception, soil physical characteristics and temperature under Zea mays L. Soil Tillage Res 91:227–235. doi:10.1016/j.still.2005.12.007

    Article  Google Scholar 

  50. Hudson BD (1994) Soil organic matter and available water capacity. J Soil Water Conserv 49:189–194

    Google Scholar 

  51. Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70:1569. doi:10.2136/sssaj2005.0117

    Article  CAS  Google Scholar 

  52. Rawls WJ, Pachepsky YA, Ritchie JC et al (2003) Effect of soil organic carbon on soil water retention. Geoderma 116:61–76. doi:10.1016/S0016-7061(03)00094-6

    Article  CAS  Google Scholar 

  53. Bateman EJ, Baggs EM (2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils 41:379–388. doi:10.1007/s00374-005-0858-3

    Article  CAS  Google Scholar 

  54. Weier KL, Doran JW, Power JF, Walters DT (1993) Denitrification and the Dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Sci Soc Am J 57:66. doi:10.2136/sssaj1993.03615995005700010013x

    Article  CAS  Google Scholar 

  55. Khalil K, Mary B, Renault P (2004) Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. Soil Biol Biochem 36:687–699. doi:10.1016/j.soilbio.2004.01.004

    Article  CAS  Google Scholar 

  56. Garrido F, Hénault C, Gaillard H et al (2002) N2O and NO emissions by agricultural soils with low hydraulic potentials. Soil Biol Biochem 34:559–575. doi:10.1016/S0038-0717(01)00172-9

    Article  CAS  Google Scholar 

  57. Baudoin E, Philippot L, Chèneby D et al (2009) Direct seeding mulch-based cropping increases both the activity and the abundance of denitrifier communities in a tropical soil. Soil Biol Biochem 41:1703–1709. doi:10.1016/j.soilbio.2009.05.015

    Article  CAS  Google Scholar 

  58. Wang WJ, Reeves SH, Salter B et al (2016) Effects of urea formulations, application rates and crop residue retention on N2O emissions from sugarcane fields in Australia. Agric Ecosyst Environ 216:137–146. doi:10.1016/j.agee.2015.09.035

    Article  CAS  Google Scholar 

  59. do Carmo JBB, Filoso S, Zotelli LC et al (2013) Infield greenhouse gas emissions from sugarcane soils in Brazil: effects from synthetic and organic fertilizer application and crop trash accumulation. GCB Bioenergy 5:267–280. doi:10.1111/j.1757-1707.2012.01199.x

    Article  Google Scholar 

  60. Shan J, Yan X (2013) Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmos Environ 71:170–175. doi:10.1016/j.atmosenv.2013.02.009

    Article  CAS  Google Scholar 

  61. Ferchaud F, Mary B (2016) Drainage and nitrate leaching assessed during 7 years under perennial and annual bioenergy crops. Bioenerg Res 1–15. doi: 10.1007/s12155–015–9710-2

  62. Breitenbeck GA, Blackmer AM, Bremner JM (1980) Effects of different nitrogen fertilizers on emission of nitrous oxide from soil. Geophys Res Lett 7:85–88. doi:10.1029/GL007i001p00085

    Article  CAS  Google Scholar 

  63. Li X, Cheng S, Fang H et al (2015) The contrasting effects of deposited NH4+ and NO3− on soil CO2, CH4 and N2O fluxes in a subtropical plantation, southern China. Ecol Eng 85:317–327. doi:10.1016/j.ecoleng.2015.10.003

    Article  Google Scholar 

  64. Peng Q, Qi Y, Dong Y et al (2011) Soil nitrous oxide emissions from a typical semiarid temperate steppe in inner Mongolia: effects of mineral nitrogen fertilizer levels and forms. Plant Soil 342:345–357. doi:10.1007/s11104-010-0699-1

    Article  CAS  Google Scholar 

  65. Hénault C, Devis X, Lucas JL, Germon JC (1998) Influence of different agricultural practices (type of crop, form of N-fertilizer) on soil nitrous oxide emissions. Biol Fertil Soils 27:299–306. doi:10.1007/s003740050437

    Article  Google Scholar 

  66. Huang Y, Li Y, Yao H (2014) Nitrate enhances N2O emission more than ammonium in a highly acidic soil. J Soils Sediments 14:146–154. doi:10.1007/s11368-013-0785-0

    Article  CAS  Google Scholar 

  67. Čuhel J, Šimek M, Laughlin RJ et al (2010) Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity. Appl Environ Microbiol 76:1870–1878. doi:10.1128/AEM.02484-09

    Article  PubMed  PubMed Central  Google Scholar 

  68. Qu Z, Wang J, Almøy T, Bakken LR (2014) Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O + N2) product ratio of denitrification, primarily due to acidification of the soils. Glob Change Biol 20:1685–1698. doi:10.1111/gcb.12461

    Article  Google Scholar 

  69. Rochester IJ (2003) Estimating nitrous oxide emissions from flood-irrigated alkaline grey clays. Soil Res 41:197–206

    Article  CAS  Google Scholar 

  70. Liu B, Frostegård Å, Bakken LR (2014) Impaired reduction of N2O to N2 in acid soils is due to a posttranscriptional interference with the expression of nosZ. MBio 5:e01383–e01314. doi:10.1128/mBio.01383-14

    Article  PubMed  PubMed Central  Google Scholar 

  71. Inselsbacher E, Wanek W, Ripka K et al (2010) Greenhouse gas fluxes respond to different N fertilizer types due to altered plant-soil-microbe interactions. Plant Soil 343:17–35. doi:10.1007/s11104-010-0597-6

    Article  Google Scholar 

  72. Kammann C, Grünhage L, Müller C et al (1998) Seasonal variability and mitigation options for N2O emissions from differently managed grasslands. Environ Pollut 102:179–186. doi:10.1016/S0269-7491(98)80031-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out within the EFEMAIR project funded by ADEME and was also supported by the Picardy region through the co-funding of a PhD thesis. We thank N. Collanges, E. Mignot and E. Venet for the assistance in field experiments and C. Dominiarczyk and A. Teixeira for help in soil analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Peyrard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peyrard, C., Ferchaud, F., Mary, B. et al. Management Practices of Miscanthus × giganteus Strongly Influence Soil Properties and N2O Emissions Over the Long Term. Bioenerg. Res. 10, 208–224 (2017). https://doi.org/10.1007/s12155-016-9796-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9796-1

Keywords

Navigation