Skip to main content
Log in

The Synergic Relationship Between Xylan Removal and Enhanced Cellulose Digestibility for Bioethanol Production: Reactive Area, Crystallinity, and Inhibitation

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Hemicellulosic fraction is thought to act as a barrier, preventing the access of cellulase to cellulose. The impact of xylan removal, by both of the chemical and biological processes, on the cellulose accessibility was comparatively studied. Poplar holocellulose with 24.7 % xylan was taken as the starting material, and the gradual removal of xylan was achieved by successive treatments with increasing NaOH concentration. The data indicated that partial removal of hemicelluloses, not complete, favored the crystal configuration transformation of cellulose and then the lignocellulose/biomass enzymatic digestibility/saccharification. The maximum enzymatic efficiency (94.6 %) was achieved when cellulose II was formed as the NaOH concentration higher than 2.0 M. With the supplement of xylanase, the inhibitory effect from oligosaccharides was probably reduced, but the accumulation of xylose still negatively affected the cellulase cocktails. From the economic perspective, the xylanase loading of 5.0 IU/g xylan was proposed and 1.2-fold increment of cellulose hydrolysis was final obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch MD (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  2. Sanderson K (2011) A chewy problem. Nature 474:S12–S14

    Article  CAS  PubMed  Google Scholar 

  3. Zhang YHP, Lynd LR (2004) Towards an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  CAS  PubMed  Google Scholar 

  4. Zhang YHP, Lynd LR (2006) A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnol Bioeng 94:889–898

    Google Scholar 

  5. Wang K, Jiang JX, Xu F, Sun RC (2009) Influence of steaming explosion time on the physic-chemical properties of cellulose from Lespedeza stalks (Lespedeza crytoborya). Bioresour Technol 100:5288–5294

    Article  CAS  PubMed  Google Scholar 

  6. Chundawat SPS, Donohoe BS, Sousa LC, Elder T, Agarwal UP, Lu F, Ralph J, Himmel ME, Balan V, Dale BE (2011) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci 4:973–984

    Article  CAS  Google Scholar 

  7. Gandolfi S, Ottolina G, Consonni R, Riva S, Patel I (2014) Fractionation of hemp hurds by organosolv pretreatment and its effect on production of lignin and sugars. ChemSusChem 7:1991–1999

    Article  CAS  PubMed  Google Scholar 

  8. Nitsos CK, Matis KA, Triantafyllidis KS (2013) Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. ChemSusChem 6:110–122

    Article  CAS  PubMed  Google Scholar 

  9. Yang B, Dai Z, Ding SY, Wyman CE (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2:421–450

    Article  CAS  Google Scholar 

  10. Wyman CE, Decker SR, Himmel ME, Brady JW, Skopec CE, Viikari L (2004) Polysaccharides: structural diversity and functional versatility. Marcel Dekker, New York

    Google Scholar 

  11. Xu N, Zhang W, Ren S, Liu F, Zhao C, Liao H, Xu Z, Huang J, Li Q, Tu Y, Yu B, Wang Y, Jiang J, Qin J, Peng L (2012) Hemicelluloses negatively affect lignocelluloses crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatment in Miscanthus. Biotechnol Biofuels 5:58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hu J, Arantes V, Pribowo A, Saddler JN (2013) The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. Biotechnol Biofuels 6:112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Li F, Ren S, Zhang W, Xu Z, Xie G, Chen Y, Tu Y, Li Q, Zhou S, Li Y, Tu F, Liu L, Wang Y, Jiang J, Qin J, Li S, Li Q, Jing H-C, Zhou F, Gutterson N, Peng L (2013) Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus. Bioresour Technol 130:629–637

    Article  CAS  PubMed  Google Scholar 

  14. Li F, Zhang M, Guo K, Hu Z, Zhang R, Feng Y, Yi X, Zou W, Wang L, Wu C, Tian J, Lu T, Xie G, Peng L (2015) High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol J 13:514–525

    Article  CAS  PubMed  Google Scholar 

  15. Wu Z, Zhang M, Wang L, Tu Y, Zhang J, Xie G, Zou W, Li F, Guo K, Li Q, Gao C, Peng L (2013) Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants. Biotechnol Biofuels 6:183

    Article  PubMed Central  PubMed  Google Scholar 

  16. Si S, Chen Y, Fan C, Hu H, Li Y, Huang J, Liao H, Hao B, Li Q, Peng L, Tu Y (2015) Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Bioresour Technol 183:248–254

    Article  CAS  PubMed  Google Scholar 

  17. Zhang W, Yi Z, Huang J, Li F, Hao B, Li M, Hong S, Lv Y, Sun W, Ragauskas A, Hu F, Peng J, Peng L (2013) Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Bioresour Technol 130:30–37

    Article  CAS  PubMed  Google Scholar 

  18. Nummi M, Marja-Leena N, Arja L, Tor-Magnus E, Veijo R (1983) Cellobiohydrolase from Trichoderma reesei. J Biochem 215:677–683

    Article  CAS  Google Scholar 

  19. Zhang YHP, Lynd LR (2005) Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacrololecules 6:1510–1515

    Article  CAS  Google Scholar 

  20. Gupta R, Lee YY (2009) Mechanism of cellulase reaction on pure cellulosic substrates. Biotechnol Bioeng 102:1570–1581

    Article  CAS  PubMed  Google Scholar 

  21. Mittal A, Katahira R, Himmel ME, Johnson DK (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects of enzymatic digestibility. Biotechno Biofuels 4:41

    Article  CAS  Google Scholar 

  22. Weimer PJ, French AD, Calamari TA Jr (1991) Differential fermentation of cellulose allomorphs by ruminal cellulolytic bacteria. Appl Environ Microbiol 57:3101–3106

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Puri VP (1984) Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol Bioeng 26:1219–1222

    Article  CAS  PubMed  Google Scholar 

  24. Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816

    Article  CAS  PubMed  Google Scholar 

  25. Ishizawa CI, Jeoh T, Adney WS, Himmel ME, Johnson DK, Davis MF (2009) Can delignification decrease cellulose digestibility in acid pretreated corn stover? Cellulose 16:677–686

    Article  CAS  Google Scholar 

  26. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012). Determination of sugars, byproducts, and degradation products in liquid fraction process samples. In: Laboratory Analytical Procedures (LAP) No. NREL/TP-510-42618. National Rene wable Energy Laboratory (NREL), Golden, CO. 2012

  27. Yang HY, Chen Q, Wang K, Sun RC (2013) Correlation between hemicelluloses-removal-induced hydrophilicity variation and the bioconversion efficiency of lignocelluloses. Bioresour Technol 147:539–544

    Article  CAS  PubMed  Google Scholar 

  28. Wood BF, Conner AH, Hill CG Jr (1986) The effect of precipitation on the molecular weight distribution of cellulose tricarbanilate. J Appl Polym Sci 32:3703–3712

    Article  CAS  Google Scholar 

  29. Wang K, Yang HY, Chen Q, Sun RC (2013) Influence of delignification efficiency with alkaline peroxide on the digestibility of furfural residues for bioethanol production. Bioresour Technol 146:208–214

    Article  CAS  PubMed  Google Scholar 

  30. Kumar R, Wyman CE (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25:302–314

    Article  CAS  PubMed  Google Scholar 

  31. Stalbrand H, Mansfield SD, Saddler JN, Kilburn DG, Warren RAJ, Gilkes NR (1998) Analysis of molecular size distributions of cellulose molecules during hydrolysis of cellulose by recombinant Cellulomonas fimih-1,4-glucanases. Appl Environ Microbiol 64:2374–2379

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Fengel D, Jakob H, Strobel C (1995) Influence of the alkali concentration on the formation of cellulose II. Study by X-ray diffraction and FTIR spectroscopy. Holzforschung 49:505–511

    Article  CAS  Google Scholar 

  33. Atalla RH, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15:1–19

    Article  CAS  PubMed  Google Scholar 

  34. Lewin M, Roldan LG (1971) Effect of liquid anhydrous ammonia in structure and morphology of cotton cellulose. J Polym Sci Pol Sym 36:213–229

    Article  Google Scholar 

  35. Wada M, Ike M, Tokuyasu K (2014) Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose II hydrate form. Polym Dgerad Stabil 95:543–548

    Article  Google Scholar 

  36. Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Andey WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122

    Article  CAS  PubMed  Google Scholar 

  37. Teleman A, Larsson P, Iversen T (2001) On the accessibility and structure of xylan in birch kraft pulp. Cellulose 8:209–215

    Article  CAS  Google Scholar 

  38. Coughlan MP (1985) The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol Genet Eng Rev 3:39–109

    Article  CAS  Google Scholar 

  39. Duarte GC, Moreira LRS, Jaramillo PMD, Filho EXF (2012) Biomass-derived inhibitors of holocellulases. Bioenerg Res 5:768–777

    Article  CAS  Google Scholar 

  40. Kumar R, Wyman CE (2009) Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol Bioeng 102:457–467

    Article  CAS  PubMed  Google Scholar 

  41. Kumar R, Wyman CE (2009) Effects of xylanase supplementation of cellulase on digestibility of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213

    Article  CAS  PubMed  Google Scholar 

  42. Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630

    Article  CAS  PubMed  Google Scholar 

  43. Qing Q, Yang B, Wyman CE (2011) Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol Biofuels 4:18. doi:10.1186/1754-6834-4-18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Xiao Z, Zhang X, Gregg D, Saddler JN (2004) Effect of sugar inhibition on cellulase and β-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol 115:1115–1126

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the Research Fund for the Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals (JSBGFC1205), Guangxi Key Lab of Chemistry and Engineering of Forest Products (GXFC14-05), and Fundamental Research Funds for the Central Universities (TD2011-11). Special thanks to Youtell Biochemical Co., Ltd. (Shanghai) for their generous gift of cellulase and xylanase. We also thank our colleagues for their valuable suggestions during the course of this work.

Conflict of Interest

The authors declare that they have no conflict of interest.

Compliance with Ethical Standards

Human participants and/or animals were not involved in research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Wang or Run-Cang Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 4266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Chen, J., Chen, Q. et al. The Synergic Relationship Between Xylan Removal and Enhanced Cellulose Digestibility for Bioethanol Production: Reactive Area, Crystallinity, and Inhibitation. Bioenerg. Res. 8, 1847–1855 (2015). https://doi.org/10.1007/s12155-015-9642-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9642-x

Keywords

Navigation