Skip to main content

Advertisement

Log in

Effect of Conservation Time and the Addition of Lactic Acid Bacteria on the Biogas and Methane Production of Corn Stalk Silage

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The effects of ensiling and baling processes, of the application of silage additives and of the storage period of corn stalks on methane production have been assessed through anaerobic digestion batch experiments, in order to evaluate the storage efficacy of corn stalks used as feedstock in biogas plants. Ensiling has proved to be a good method for corn stalk preservation for methane production, as it helps to maintain low pH values of the biomass and reduce volatile solid losses during storage, even for longer periods than 3 months. It has been shown that ensiling does not affect the cumulative methane production of corn stalks but does improve the methane production rate at the beginning of the process. This can be attributed to an increase in ethanol during ensiling, which favours the rapid start of anaerobic digestion. Corn stalks inoculated with lactic acid bacteria have shown similar pH and slightly higher lactic and acetic acid contents than untreated ones, but these changes have not had a practical effect on methane production. Dry baled corn stalks have shown a lower methane production than ensiled stalks, due to the respiration process that takes place in the field during the wilting period and to the reduction in degradability, because of drying. Nevertheless, the choice of an adequate harvest chain of corn stalks is very important in order to obtain higher energy efficiency from ensiled corn stalks than from dry conservation. If the harvested biomass per hectare is very low, ensiled corn stalks could be an inefficient way of managing this biomass for methane production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jeschke M, Heggenstaller A (2012) Sustainable corn stover harvest for biofuel production. Crop Insights 22:1–6

    Google Scholar 

  2. Sokhahsanj S, Mani S, Tagore S, Turhollow AF (2010) Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant – part 1: cost of feedstock supply logistics. Biomass Bioenergy 34:75–81

    Article  Google Scholar 

  3. Shinners KJ, Wepner AD, Muck RE, Weimer PJ (2011) Aerobic and anaerobic storage of single-pass chopped corn stover. Bioenergy Res 4:61–75

    Article  Google Scholar 

  4. Fei C, Chen HZ (2009) Absorption of ethanol by steam exploded corn stalks. Bioresour Technol 100:1315–1318

    Article  CAS  PubMed  Google Scholar 

  5. Menardo S, Airoldi G, Balsari P (2012) The effect of particle size and thermal pre-treatment on the methane yield of four agricultural by-products. Bioresour Technol 104:708–714

    Article  CAS  PubMed  Google Scholar 

  6. Yuan X, Peipei L, Hui W, Xiaofen W, Xu C, Zongjun C (2011) Enhancing the anaerobic digestion of corn stalks using composite microbial pretreatment. J Microbiol Biotechnol 21:746–752

    Article  PubMed  Google Scholar 

  7. Alburquerque JA, de la Fuente C, Campoy M, Carrasco L, Nájerab I, Baixaulib C, Caravaca F, Roldán A, Cegarra J, Bernal MP (2012) Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur J Agron 43:119–128

    Article  Google Scholar 

  8. Ren HY, Richard TL, Chen ZL, Kuo ML, Bian YL, Moore KJ, Patrick P (2006) Ensiling corn stover: effect of feedstock preservation on particleboard performance. Biotechnol Prog 22:78–85

    Article  CAS  PubMed  Google Scholar 

  9. Shinners KJ, Binversie BN, Muck RE, Weimer PJ (2007) Comparison of wet and dry corn stover harvest and storage. Biomass Bioenergy 31:211–221

    Article  Google Scholar 

  10. Egg RP, Coble CG, Engler CR, Lewis DH (1993) Feedstock storage, handling and processing. Biomass Bioenergy 5:71–94

    Article  CAS  Google Scholar 

  11. Pahlow G, Muck RE, Driehuis F, Oude Elferink SJWH, Spoelstra SF (2003) Microbiology of ensiling. In: Buxton DR, Muck RE, Harrison JH (eds) Silage and technology. American Society of Agronomy Inc, Madison, pp 31–93

    Google Scholar 

  12. Vervaeren H, Hostyn K, Ghekiere G, Willems B (2010) Biological ensilage additives as pretreatment for maize to increase the biogas production. Renew Energy 35:2089–2093

    Article  CAS  Google Scholar 

  13. Muck RE (2013) Recent advances in silage microbiology. Agric Food Sci 22:3–15

    CAS  Google Scholar 

  14. Verein Deutscher Ingenieure 4630 (2006) Fermentation of organic materials. Characterisation of the substrate, sampling, collection of material data, fermentation tests. VDI Handbuch Energietechnik, Berlin

    Google Scholar 

  15. Budiyono B, Widiasa IN, Johari S, Sunarso S (2010) The kinetics of biogas production rate from cattle manure in batch mode. Int J Chem Biomol Eng 3:39–44

    CAS  Google Scholar 

  16. Nopharatana A, Pullammanappallil PC, Clarke WP (2007) Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor. Waste Manag 27:595–603

    Article  CAS  PubMed  Google Scholar 

  17. Porter MG, Murray RS (2001) The volatility of components of grass silage on oven drying and the inter-relationship between dry-matter content estimated by different analytical methods. Grass Forage Sci 56:405–411

    Article  CAS  Google Scholar 

  18. Dubois M, Giles KA, Hamilton JK, Rebes PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  19. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods of dietary fiber, neutral detergent fiber and non-polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597

    Article  PubMed  Google Scholar 

  20. Robertson JB, Van Soest PJ (1981) The detergent system of analysis. In: James WPT, Theander O (eds) The analysis of dietary fibre in food, chapter 9. Marcel Dekker, New York, pp 123–158

    Google Scholar 

  21. Borreani G, Tabacco E (2014) Improving corn silage quality in the top layer of farm bunker silos through the use of a next-generation barrier film with high impermeability to oxygen. J Dairy Sci 97:2415–2426

    Article  CAS  PubMed  Google Scholar 

  22. Beitz W, Küttner KH (1987) Dubbel pocket-book for engineering (Dubbel Taschenbuch für den Maschinenbau). Springer, Berlin

    Google Scholar 

  23. Dalgaard T, Halber N, Porter JR (2001) A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agric Ecosyst Environ 87:51–65

    Article  Google Scholar 

  24. Hammond GP, Jones CI (2008) Embodied energy and carbon in construction materials. Proc Inst Civ Eng Energy 161:87–98

    Google Scholar 

  25. Herrmann C, Heiermann M, Idler C (2011) Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresour Technol 102:5153–5161

    Article  CAS  PubMed  Google Scholar 

  26. Liu ZH, Qin L, Jin MJ, Pang F, Li BZ, Kang Y, Dale BE (2013) Evaluation of storage methods for the conversion of corn stover biomass to sugars based on steam explosion pretreatment. Bioresour Technol 132:5–15

    Article  CAS  PubMed  Google Scholar 

  27. Lynch JP, O’Kiely P, Waters SM, Doyle EM (2012) Conservation characteristics of corn ears and stover ensiled with the addition of Lactobacillus plantarum MTD-1, Lactobacillus plantarum 30114, or Lactobacillus buchneri 11A44. J Dairy Sci 95:2070–2080

    Article  CAS  PubMed  Google Scholar 

  28. Kreuger E, Nges IA, Björnsson L (2011) Ensiling of crops for biogas production: effects on methane yield and total solids determination. Biotechnol Biofuels 4:44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Huida L, Vaatainen H, Lampila M (1986) Comparison of dry-matter contents in grass silages as determined by oven drying and gas-chromatographic water analysis. Ann Agric Fenn 25:215–230

    CAS  Google Scholar 

  30. Brahmakshatriya RD, Donker JD (1971) Five methods for determination of silage dry matter. J Dairy Sci 54:1470–1474

    Article  Google Scholar 

  31. Heiermann M, Plöchl M, Linke B, Schelle H (2002) Preliminary evaluation of some cereals as energy crops for biogas production. In: Sayigh AAM (ed) World renewable energy congress VII, Köln. Elsevier, Amsterdam

  32. Blume F, Bergmann I, Nettmann E, Schelle H, Rehde G, Mundt K, Klocke M (2010) Methanogenic population dynamics during semi-continuous biogas fermentation and acidification by overloading. J Appl Microbiol 109:441–450

    CAS  PubMed  Google Scholar 

  33. Dirnena I, Dimanta I, Gruduls A, Kleperis J, Elferts D, Nikolajeva V (2014) Influence of the initial acidification step on biogas production and composition. Biotechnol Appl Biochem 61:316–321

    CAS  PubMed  Google Scholar 

  34. Zhang T, Mao C, Zhai N, Wang X, Yang G (2015) Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk. Waste Manag 35:119–126

    Article  PubMed  Google Scholar 

  35. Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44:550–552

    Article  CAS  Google Scholar 

  36. Durix A, Jean-Blain C, Sallmann HP, Jouanf P (1991) Use of a semicontinuous culture system (RUSITEC) to study the metabolism of ethanol in the rumen and its effects on ruminal digestion. Can J Anim Sci 71:115–123

    Article  CAS  Google Scholar 

  37. Plöchl M, Zacharias H, Hermann C, Heiremann M, Prochnow A (2009) Influence of silage additives on methane yield and economic performance of selected feedstock. Agric Eng Int IX:1123

    Google Scholar 

  38. Pakarinen O, Lehtomäki A, Rissanen S, Rintala J (2008) Storing energy crops for methane production: effects of solids content and biological additive. Bioresour Technol 99:7074–7082

    Article  CAS  PubMed  Google Scholar 

  39. Neureiter M., dos Santos JTP, Lopez CP, Pichler H, Kirchmayr R, Braun R (2005) Effect of silage preparation on methane yields from whole crop maize silages. In: Ahring BK, Hartmann H (eds) 4th international symposium on anaerobic digestion of solid waste, Copenhagen, Denmark, pp 109–115

  40. Lehtomäki A (2006) Biogas production from energy crops and crop residues. PhD thesis, University of Jyväskylä, Faculty of Mathematics and Science

  41. Dewar WA, McDonald P, Whittenbury R (1963) The hydrolysis of grass hemicelluloses during ensilage. J Sci Food Agric 14:411–417

    Article  CAS  Google Scholar 

  42. McDonald P, Henderson AR, Heron SJE (1991) The biochemistry of silage. Chalcombe Publications, Marlow

    Google Scholar 

  43. Nussbaum H (2012) Effects of silage additives based on homo- or heterofermentative lactic acid bacteria on methane yields in the biogas processing. In: Proceedings XVI International Silage conference Hämeenlinna, Finland. The Scientific Agricultural Society of Finland, Finland, pp 452–453

  44. Thomas JW, Brown LD, Emery RS, Benne EJ, Huber JT (1969) Comparisons between alfalfa silage and hay. J Dairy Sci 52:195–204

    Article  CAS  PubMed  Google Scholar 

  45. Bal AS, Dhagat NN (2001) Upflow anaerobic sludge blanket reactor - a review. Ind J Environ Health 43:1–82

    CAS  Google Scholar 

  46. Morey RV, Kaliyan N, Tiffany DG, Schmidt DR (2010) A corn stover supply logistics system. Appl Eng Agric 26:455–461

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Menardo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menardo, S., Balsari, P., Tabacco, E. et al. Effect of Conservation Time and the Addition of Lactic Acid Bacteria on the Biogas and Methane Production of Corn Stalk Silage. Bioenerg. Res. 8, 1810–1823 (2015). https://doi.org/10.1007/s12155-015-9637-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9637-7

Keywords

Navigation