Skip to main content

Advertisement

Log in

Biodiesel Production by Direct In Situ Transesterification of an Oleaginous Tropical Mangrove Fungus Grown on Untreated Agro-Residues and Evaluation of Its Fuel Properties

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Recent research has focused on use of waste agro- residues for growth of oleaginous microbial biomass as renewable feedstock for biodiesel. However, pretreatment of lignocellulosic biomass into fermentable sugar is necessary for microbial growth, increasing production costs. An oleaginous fungal isolate from the tropical mangrove wetlands, IBB G4, identified as Aspergillus candidus was assessed for its growth on waste agro-residues viz., banana peel, copra meal, corn cob, grape stalks and sugarcane bagasse,which had not been given any thermo-chemical or enzymatic pre-treatment. The resulting fungal biomass was subjected to in situ (direct) acid transesterification for fatty acid methyl esters (FAME) extraction. Maximal FAME production was obtained on raw untreated banana peel (420 mg/L) and sugarcane bagasse (400 mg/L) with the yields significantly higher (52–68 mg/g of fermented biomass) than those for glucose (32 mg/g). The FAMEs showed major presence of monounsaturated methyl esters (41.7 %; C18:1, C15:1, C17:1, C14:1) and methyl linoleate (C18:2, 36.8 %) and 20 % as saturated fraction when sugarcane bagasse was the substrate for fungal strain. For banana peel, the saturated fatty acid methyl esters (48.6 %; C16:0, C18:0) were abundant, methyl oleate (C18:1, 25 %) was the major monounsaturated fatty ester while methyl linoleate (C18:2, 19 %) and methyl arachidonate (C20:4, 3.8 %) were prevalent as polyunsaturated methyl esters. Biodiesel fuel properties (density, kinematic viscosity, iodine value, cetane number, free and total glycerol) were in accordance with international(ASTM D6751, EN 14214) and national (IS 15607) biodiesel standards, suggesting their suitability as biodiesel fuel.The results in our study indicate the potential suitability of A. candidus IBBG4 biomass grown on raw untreated banana peel and sugarcane bagasse waste and its conversion to FAME by direct in situ acid transesterification. This would help improve process economics for a green and sustainable production of biodiesel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. REN 21’s Renewables 2014, Global Status Report; www.ren21.net.Accessed 5 Jan 2015

  2. Nascimento IA, Marques SSI, Cabanelas ITD et al (2013) Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty-acids profiles as selective criteria. Bioenerg Res 6:1–13

    Article  CAS  Google Scholar 

  3. Meeuwse P, Sanders JPM, Tramper J, Rinzema A (2013) Lipids from yeasts and fungi: Tomorrow’s source of biodiesel? Biofuels Bioprod Biorefin 7:512–524

    Article  CAS  Google Scholar 

  4. Zheng Y, Yu X, Zeng J, Chen S et al (2012) Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw. Biotechnol Biofuels 5:50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Yousuf A (2012) Biodiesel from lignocellulosic biomass — Prospects and challenges. Waste Manag 32:2061–2067

    Article  CAS  PubMed  Google Scholar 

  6. Huang C, Chen X, Xiong L et al (2012) Single cell oil production from low-cost substrates: The possibility and potential of its industrialization. Biotechnol Adv 31:129–139

    Article  CAS  PubMed  Google Scholar 

  7. Yang SJ, Kataeva I, Hamilton-Brehm SD et al (2009) Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe “Anaerocellumthermophilum” DSM 6725. Appl Environ Microbiol 75:4762–4769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Linger JG, Darzins A (2013) Consolidated bioprocessing. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer Science + Business Media, New York, pp 267–280

    Chapter  Google Scholar 

  9. Khot M, Kamat S, Zinjarde S et al (2012) Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel. Microb Cell Factories 11:71

    Article  CAS  Google Scholar 

  10. Liu B, Zhao Z (2007) Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biotechnol 82:775–780

    Article  CAS  Google Scholar 

  11. Vicente G, Bautista LF, Gutierrez FJ et al (2010) Direct transformation of fungal biomass from submerged cultures into biodiesel. Energy Fuel 24:3173–3178

    Article  CAS  Google Scholar 

  12. Lewis T, Nicholas PD, McMeekin TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid producing micro-heterotrophs. J Microbiol Methods 43:107–116

    Article  CAS  PubMed  Google Scholar 

  13. Subhash VG, Mohan VS (2011) Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour Technol 102:9286–9290

    Article  Google Scholar 

  14. Alcantara R, Amores J, Canoira L et al (2000) Catalytic production of biodiesel from soybean oil, used frying oil and tallow. Biomass Bioenergy 18:515–527

    Article  CAS  Google Scholar 

  15. Al-Widyan MI, Al-Shyoukh AO (2002) Experimental evaluation of the transesterification of waste palm oil into biodiesel. Bioresour Technol 85:253–256

    Article  CAS  PubMed  Google Scholar 

  16. Mondala A, Liang K, Toghiani H et al (2009) Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresour Technol 100:1203–1210

    Article  CAS  PubMed  Google Scholar 

  17. Wahlen BD, Willis MR, Seefeldt LC et al (2011) Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria and wild mixed-cultures. Bioresour Technol 102:2724–2730

    Article  CAS  PubMed  Google Scholar 

  18. Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalgaSchizochytriumlimacinum by direct transesterification of algal biomass. Energy Fuel 23:5179–5183

    Article  CAS  Google Scholar 

  19. Suutari M, Priha P, Laakso S (1993) Temperature shifts in regulation of lipids accumulated by Lipomycesstarkeyi. J Am Oil Chem Soc 70:891–894

    Article  CAS  Google Scholar 

  20. Klich MA (2002) Identification of common Aspergillus species. Centraalbureau voor Schimmelcultures, Utrecht

    Google Scholar 

  21. Varga J, Frisvad JC, Samson RA (2007) Polyphasic taxonomy ofAspergillussectionCandidibased on molecular, morphological and physiological data. Stud Mycol 59:75–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Stahl PD, Klug MJ (1996) Characterization and differentiation of filamentous fungi based on fatty acid composition. Appl Environ Microbiol 62:4136–4146

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Fraga ME, Santana DMN, Gatti MJ et al (2008) Characterization of Aspergillus species based on fatty acid profiles. Mem Inst Oswaldo Cruz 103(6):540–544

    Article  PubMed  Google Scholar 

  24. Knothe GH (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070

    Article  CAS  Google Scholar 

  25. Pratas MJ, Freitas Samuel VD, Oliveira MB et al (2011) Biodiesel density: experimental measurements and prediction models. Energy Fuel 25:2333–2340

    Article  CAS  Google Scholar 

  26. Lapuerta M, Rodriguez-Fernandez J, Armas O (2010) Correlation for the estimation of the density of fatty acid esters fuels and its implications, a proposed biodiesel cetane index. Chem Phys Lipids 163:720–727

    Article  CAS  PubMed  Google Scholar 

  27. Knothe G, Steidley KR (2011) Kinematic viscosity of fatty acid methyl esters: prediction, calculated viscosity contribution of esters with unavailable data, and carbon–oxygen equivalents. Fuel 90:3217–3224

    Article  CAS  Google Scholar 

  28. Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob ADR (2012) Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91:102–111

    Article  Google Scholar 

  29. Azam MM, Waris A, Nahar NM (2005) Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenergy 29:293–302

    Article  Google Scholar 

  30. Gunstone FD, Harwood JL, Dijkstra AJ (2007) The Lipid Handbook. CRC Press, Boca Raton

    Google Scholar 

  31. Demirbas A (1998) Fuel properties and calculation of higher heating values of vegetable oils. Fuel 77:1117–1120

    Article  CAS  Google Scholar 

  32. Ramos MJ, Fernández CM, Casas A et al (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268

    Article  CAS  PubMed  Google Scholar 

  33. Soares AT, Dayane CC, Silva BF (2014) Comparative analysis of the fatty acid composition of microalgae obtained by different oil extraction methods and direct biomass transesterification. Bioenerg Res 7(3):1035–1044

    Article  CAS  Google Scholar 

  34. Amaretti A, Raimondi S, Sala M et al (2010) Single cell oils of the cold-adapted oleaginous yeast Rhodotorulaglacialis DBVPG 4785. Microb Cell Factories 9:73

    Google Scholar 

  35. Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23(3):396–405

    Article  CAS  PubMed  Google Scholar 

  36. PandeyA SCR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresour Technol 74:69–80

    Article  Google Scholar 

  37. Santa-Maria M, Ruiz-Colorado AA, Cruz G (2013) Assessing the feasibility of biofuels production from lignocellulosicbanana waste in rural agricultural communities in Peru and Colombia. Bioenerg Res 6:1000–1011

    Article  CAS  Google Scholar 

  38. Thliveros P, UckunKiran E, Webb C (2014) Microbial biodiesel production by direct methanolysis of oleaginous biomass. Bioresour Technol 157:181–187

    Article  CAS  PubMed  Google Scholar 

  39. Cheirsilp B, Louhasakul Y (2013) Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel. Bioresour Technol 142:329–337

    Article  CAS  PubMed  Google Scholar 

  40. Ratledge C (1989) Biotechnology of oils and fats. In: Ratledge C, Wilkinson SG (eds) Microbial Lipids, volume 2. Academic Press, London, pp 567–668

    Google Scholar 

  41. Subramaniam R, Dufreche S, Zappi M, Bajpai R (2010) Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37:1271–1287

    Article  CAS  PubMed  Google Scholar 

  42. Katre G, Joshi C, Khot M et al (2012) Evaluation of single cell oil (SCO) from tropical marine yeast Yarrowialipolytica NICM 3589 as a potential feedstock for biodiesel. AMB Express 2:36

    Article  PubMed Central  PubMed  Google Scholar 

  43. Raper KB, Fennell DI (1965) The genus Aspergillus. Williams & Wilkins, Baltimore

    Google Scholar 

  44. Nemec T, Jernec K, Cimerman A (1997) Sterols and fatty acids of different Aspergillus species. FEMS Microbiol Lett 149:201–205

    Article  CAS  Google Scholar 

  45. Wilson RA, Calvo AM, Chang PK, Keller NP (2004) Characterization of the Aspergillusparasiticus12-desaturase gene: a role for lipid metabolism in the Aspergillus-seed interaction. Microbiology 150:2881–2888

    Article  CAS  PubMed  Google Scholar 

  46. Wynn JP, Ratledge C (1997) Malic enzyme is a major source of NADPH for lipid accumulation by Aspergillus nidulans. Microbiology 143:253–257

    Article  CAS  Google Scholar 

  47. Knothe G (2008) “Designer” Biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuel 22:1358–1364

    Article  CAS  Google Scholar 

  48. NREL (2009) Biodiesel handling and use guide. National Renewable Energy Laboratory, U.S.Department of Energy. http://www.nrel.gov/vehiclesandfuels/pdfs/43672.pdf. Accessed 17 June 2014

  49. Moser BR, Vaughn SF (2012) Efficacy of fatty acid profile as a tool for screening feedstocks for biodiesel production. Biomass Bioenergy 37:31–41

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank IBB Institutional Research Fund (DRDP) and DST Purse, Savitribai Phule Pune University, Pune for financial support.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameeta RaviKumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakkad, H., Khot, M., Zinjarde, S. et al. Biodiesel Production by Direct In Situ Transesterification of an Oleaginous Tropical Mangrove Fungus Grown on Untreated Agro-Residues and Evaluation of Its Fuel Properties. Bioenerg. Res. 8, 1788–1799 (2015). https://doi.org/10.1007/s12155-015-9626-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9626-x

Keywords

Navigation