Skip to main content

Advertisement

Log in

Economic and Environmental Analysis for Corn Stover and Switchgrass Supply Logistics

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Supply logistics systems for corn (Zea mays L.) stover and switchgrass (Panicum virgatum L.) with two collection methods, round bales and rectangular bales, are developed. A location in the US Midwest is assumed with corn grown on highly productive crop land and switchgrass grown on less productive land. Bales (15 % moisture wet basis) are stored at local storage sites within 3.2 km (2 mi) of the field at harvest time. Biomass is transported to an end user within a 48 km (30 mi) throughout the year. Round bales are converted to bulk product [bulk density of 240 kg m−3 (15 lb ft−3)] by tub grinding followed by roll-press compacting before truck transport. Rectangular bales are delivered by truck without processing. Total delivered cost is $97.70 Mg−1 ($88.63 ton−1) for corn stover and $137.87 Mg−1 ($125.07 ton−1) for switchgrass when delivered as a bulk compacted product. Total delivered cost is $90.25 Mg−1 ($81.87 ton−1) for corn stover and $128.67 Mg−1 ($116.73 ton−1) for switchgrass when delivered as rectangular bales. Life-cycle fossil energy consumption is higher for delivering switchgrass (9.9 to 13.8 % of energy in dry matter) than for corn stover (5.8 to 9.5 % of energy in dry matter). Excluding any potential change in soil organic carbon (SOC), life-cycle greenhouse gas (GHG) emissions are 59.2 to 99.8 kg CO2e Mg−1 for delivering corn stover and 231.8 to 279.6 kg CO2e Mg−1 for delivering switchgrass. The effect of change in SOC on the life-cycle GHG emissions for corn stover and switchgrass is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. U.S. Department of Energy (2011) U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry. Perlack RD, Stokes BJ (leads), ORNL/TM-2011/224. Oak Ridge National Laboratory, Oak Ridge, TN, 227 pp. http://www1.eere.energy.gov/bioenergy/pdfs/billion_ton_update.pdf. Accessed 7 November 2014

  2. Perlack RD, Turhollow AF (2002) Assessment of options for the collection, handling, and transport of corn stover. ORNL/TM-2002/44. Oak Ridge National Laboratory, Oak Ridge, TN, 27 pp. http://web.ornl.gov/~webworks/cppr/y2001/rpt/113127.pdf. Accessed 7 November 2014

  3. Sokhansanj S, Kumar A, Turhollow AF (2006) Development and implementation of integrated biomass supply analysis and logistics model (IBSAL). Biomass Bioenergy 30(10):838–847

    Article  Google Scholar 

  4. Brechbill S, Tyner WE (2008) The economics of renewable energy: corn stover and switchgrass. Purdue Extension ID-404-W. Purdue University, West Lafayette, Indiana, USA. https://extension.purdue.edu/renewable-energy/bioenergy.shtml. Accessed 7 November 2014

  5. Petrolia DR (2008) The economics of harvesting and transporting corn stover for conversion to fuel ethanol: a case study for Minnesota. Biomass Bioenergy 32(7):603–612

    Article  Google Scholar 

  6. Thompson JL, Tyner WE (2014) Corn stover for bioenergy production: cost estimates and farmer supply response. Biomass Bioenergy 62:166–173

    Article  Google Scholar 

  7. Cundiff JS, Marsh LS (1996) Harvest and storage costs for bales of switchgrass in the southeastern United States. Biomass Bioenergy 56:95–101

    CAS  Google Scholar 

  8. Epplin FM (1996) Cost to produce and deliver switchgrass biomass to an ethanol conversion facility in the southern plains of the United States. Biomass Bioenergy 11(6):459–467

    Article  Google Scholar 

  9. Duffy M (2008) Estimated costs for production, storage and transportation of switchgrass. Ag Decision Maker File A1-22. Iowa State University Extension, Ames, IA, February 2008.http://www.extension.iastate.edu/agdm/crops/pdf/a1-22.pdf.Accessed 7 November 2014

  10. Bransby DI, Smith HA, Taylor CR, Duffy PA (2005) Switchgrass budget model: an interactive budget model for producing & delivering switchgrass to a bioprocessing plant. Ind Biotechnol 1(2):122–125

    Article  Google Scholar 

  11. Kumar A, Sokhansanj S (2007) Switchgrass (Panicum virgatum, L.) delivery to a biorefinery using integrated biomass supply analysis and logistics (IBSAL) model. Bioresour Technol 98:1033–1044

    Article  CAS  PubMed  Google Scholar 

  12. Khanna M, Dhungana B, Clifton-Brown J (2008) Costs of producing miscanthus and switchgrass for bioenergy in Illinois. Biomass Bioenergy 32(6):482–493

    Article  Google Scholar 

  13. Larson JA, Yu TH, English BC, Mooney DF, Wang C (2010) Cost evaluation of alternative switchgrass producing, harvesting, storing, and transporting systems and their logistics in the southeastern USA. Agric Finance Rev 70(2):184–200

    Article  Google Scholar 

  14. Cundiff JS, Grisso RD (2008) Containerized handling to minimize hauling cost of herbaceous biomass. Biomass Bioenergy 32(4):308–313

    Article  Google Scholar 

  15. Sokhansanj S, Turhollow AF (2004) Biomass densification—cubing operation and costs for corn stover. Appl Eng Agric 20(4):495–499

    Article  Google Scholar 

  16. Sokhansanj S, Mani S, Turhollow A, Kumar A, Bransby D, Lynd L, Laser M (2009) Large-scale production, harvest and logistics of switchgrass (Panicum virgatum L.)—current technology and envisioning a mature technology. Biofuels Bioprod Biorefin 3(2):124–141

    Article  CAS  Google Scholar 

  17. Kaliyan N, Morey RV, Schmidt DR (2013) Roll press compaction of corn stover and perennial grasses to increase bulk density. Biomass Bioenergy 55:322–330

    Article  Google Scholar 

  18. Morey RV, Kaliyan N, Tiffany DG, Schmidt DR (2010) A corn stover supply logistics system. Appl Eng Agric 26(3):455–461

    Article  Google Scholar 

  19. Turhollow AF, Perlack RD (1991) Emissions of CO2 from energy crop production. Biomass Bioenergy 1(3):129–135

    Article  CAS  Google Scholar 

  20. Ney RA, Schnoor JL (2002) Incremental life cycle analysis: using uncertainty analysis to frame greenhouse gas balances from bioenergy systems for emission trading. Biomass Bioenergy 22:257–269

    Article  Google Scholar 

  21. Smeets EMW, Lewandowski IM, Faaij APC (2009) The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting. Renew Sust Energ Rev 13:1230–1245

    Article  Google Scholar 

  22. Sindelar AJ, Coulter JA, Lamb JA, Vetsch JA (2013) Agronomic responses of continuous corn to stover, tillage, and nitrogen management. Agron J 105:1498–1506

    Article  Google Scholar 

  23. Birrell SJ, Karlen DL, Wirt A (2014) Development of sustainable corn stover harvest strategies for cellulosic ethanol production. Bioenergy Res 7:509–516

    Article  CAS  Google Scholar 

  24. Lazarus WF (2010) Minnesota crop cost & return guide for 2011. University of Minnesota Extension, St. Paul, MN, November 2010. http://faculty.apec.umn.edu/wlazarus/documents/cropbud.pdf. Accessed 7 November 2014

  25. GREET (2013) The greenhouse gases, regulated emissions, and energy use in transportation model. Argonne National Laboratory, Argonne, IL. http://greet.es.anl.gov/. Accessed 7 November 2014

  26. IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Prepared by the National Greenhouse Gas Inventories Programme. Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds). Institute for Global Environmental Strategies (IGES), Hayama, Japan. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html. Accessed 7 November 2014

  27. Lazarus WF (2013) Machinery cost estimates. University of Minnesota Extension, St. Paul, MN, June 2013. http://faculty.apec.umn.edu/wlazarus/tools.html. Accessed 7 November 2014

  28. Shinners KJ, Boettcher GC, Muck RE, Weimer PJ, Casler MD (2010) Harvest and storage of two perennial grasses as biomass feedstocks. Trans ASABE 53(2):359–370

    Article  Google Scholar 

  29. Sokhansanj S, Turhollow AF (2002) Baseline cost for corn stover collection. Appl Eng Agric 18(5):525–530

    Article  Google Scholar 

  30. Shinners KJ, Binversie BN, Muck RE, Weimer PJ (2007) Comparison of wet and dry corn stover harvest and storage. Biomass Bioenergy 31(4):211–221

    Article  Google Scholar 

  31. Kaliyan N, Schmidt DR, Morey RV, Tiffany DG (2012) Commercial scale tub grinding of corn stover and perennial grasses. Appl Eng Agric 28(1):79–85

    Article  Google Scholar 

  32. Wilhelm WW, Johnson JMF, Karlen DL, Lightle DT (2007) Corn stover to sustain soil organic carbon further constrains biomass supply. Agron J 99(6):1665–1667

    Article  CAS  Google Scholar 

  33. Johnson JMF, Novak JM, Varvel GE, Stott DE, Osborne SL, Karlen DL, Lamb JA, Baker J, Adler PR (2014) Crop residue mass needed to maintain soil organic carbon levels: can it be determined? Bioenergy Res 7:481–490

    Article  CAS  Google Scholar 

  34. Anderson-Teixeira KJ, Davis SC, Masters MD, Delucia EH (2009) Changes in soil organic carbon under biofuel crops. Glob Chang Biol Bioenergy 1:75–96

    Article  CAS  Google Scholar 

  35. Monti A, Barbanti L, Zatta A, Zegada-Lizarazu W (2012) The contribution of switchgrass in reducing GHG emissions. Glob Chang Biol Bioenergy 4:420–434

    Article  CAS  Google Scholar 

  36. Kwon H, Mueller S, Dunn JB, Wander MM (2013) Modeling state-level soil carbon emission factors under various scenarios for direct land use change associated with United States biofuel feedstock production. Biomass Bioenergy 55:299–310

    Article  CAS  Google Scholar 

  37. Hudiburg TW, Davis SC, Parton W, Delucia EH (2014) Bioenergy crop greenhouse gas mitigation potential under a range of management practices. Glob Chang Biol Bioenergy. doi:10.1111/gcbb.12152

    Google Scholar 

  38. Edwards W, Johanns A, Chamra A (2013) 2013 Iowa farm custom rate survey. Ag Decision Maker File A3-10. Iowa State University, Extension and Outreach, Ames, Iowa, USA.http://www.extension.iastate.edu/agdm/crops/html/a3-10.html. Accessed 5 April 2013

  39. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge University Press, Cambridge, UK and New York, NY, USA.http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml. Accessed 7 November 2014

  40. Morey RV, Hatfield DL, Sears R, Haak D, Tiffany DG, Kaliyan N (2009) Fuel properties of biomass feed streams at ethanol plants. Appl Eng Agric 25(1):57–64

    Article  Google Scholar 

  41. Pilz H, Schweighofer J, Kletzer E (2005) The contribution of plastic products to resource efficiency. GUA-Gesellschaft für umfassende Analysen, Vienna.http://www.plasticseurope.org/document/gua---the-contribution-of-plastic-products-to-resource-efficiency-full-report---january-2005.aspx. Accessed 7 November 2014

Download references

Acknowledgments

This research was supported by the North Central Regional Sun Grant Center–US Department of Transportation Biobased Transportation Research Program (grant number DOTS59-07-G-00054).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vance Morey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaliyan, N., Morey, R.V. & Tiffany, D.G. Economic and Environmental Analysis for Corn Stover and Switchgrass Supply Logistics. Bioenerg. Res. 8, 1433–1448 (2015). https://doi.org/10.1007/s12155-015-9609-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9609-y

Keywords

Navigation