Skip to main content
Log in

Nitrogen and Tillage Management Affect Corn Cellulosic Yield, Composition, and Ethanol Potential

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Corn (Zea mays L.) stover and cobs remaining after grain harvest can serve as a feedstock for cellulosic ethanol production. Field trials were conducted at two locations in Minnesota over three years to determine how corn cellulosic yield composition and ethanol yield are influenced by tillage system [chisel tillage (CT), strip-tillage (ST), and no-tillage (NT)] and fertilizer N rate (0, 45, 90, 134, 179, and 234 kg N ha−1). Stover biomass yield, C and N concentrations and content, and potential ethanol yield increased with increasing fertilizer N rate. Stover biomass yield, C content, and potential cellulosic ethanol yield were less with NT than CT and ST by ≥9, 8, and 8 %, respectively. Theoretical ethanol yield of stover was maximized at a fertilizer N rate lower than the economically optimum N rate (EONR) for grain yield. Cob biomass yield, C concentration and content, N concentration, and potential ethanol yield increased with fertilizer N rate, but not at the same magnitude observed for stover. Tillage system did not influence cob biomass yield, C and N concentrations and content, or potential ethanol yield. These results demonstrate that biomass and ethanol production of stover and cobs can be affected by N and tillage management. Cobs may be a more viable feedstock option than stover because nearly all measured variables were less sensitive to management and their harvest removes less C and N from a field compared to full harvest of combined cobs and stover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sissine F (2007) Energy independence and security act of 2007. RL34294. Congressional Res. Serv., Washington, DC

  2. Sheehan J, Aden A, Paustian K, Killian K, Brenner J, Walsh M, Nelson R (2004) Energy and environmental aspects of using corn stover for fuel ethanol. J Ind Ecol 7:117–146

    Article  Google Scholar 

  3. Graham RL, Nelson R, Sheehan J, Perlack RD, Wright LL (2007) Current and potential U.S. corn stover supplies. Agron J 99:1–11

    Article  Google Scholar 

  4. Johnson JM-F, Allmaras RR, Reicosky DC (2006) Estimating source carbon from national crop residues, roots, and rhizodeposits using the national grain-yield database. Agron J 98:622–636

    Article  CAS  Google Scholar 

  5. Blanco-Canqui H, Lal R, Post WM, Izaurralde RC, Owens LB (2006) Rapid changes in soil carbon and structural properties due to stover removal from no-till corn plots. Soil Sci 171:468–482

    Article  CAS  Google Scholar 

  6. Clapp CE, Allmaras RR, Layese MF, Linden DR, Dowdy RH (2000) Soil organic carbon and 13C abundance as related to tillage, crop residue, and nitrogen fertilization under continuous corn management in Minnesota. Soil Till Res 55:127–142

    Article  Google Scholar 

  7. Karlen DL, Wollenhaupt NC, Erbach DC, Berry EC, Swan JB, Eash NS, Jordahl JL (1994) Crop residue effects on soil quality following 10-years of no-till corn. Soil Till Res 31:149–167

    Article  Google Scholar 

  8. Blanco-Canqui H, Lal R, Post WM, Izaurralde RC, Shipitalo MJ (2007) Soil hydraulic properties influenced by corn stover removal from no-till corn in Ohio. Soil Till Res 92:144–155

    Article  Google Scholar 

  9. Lehman RM, Ducey TF, Jin VL, Acosta-Martinez V, Ahlschwede CM, Jeske ES, Drijber RA, Cantrell KB, Frederick JR, Fink DM, Osborne SL, Novak JM, Johnson JMF, Varvel GE (2014) Soil microbial community response to corn stover harvesting under rain-fed, no-till conditions at multiple US locations. Bioenerg Res 7:540–550

    Article  Google Scholar 

  10. Cruse RM, Herndl CG (2009) Balancing corn stover harvest for biofuels with soil and water conservation. J Soil Water Conserv 64:286–291

    Article  Google Scholar 

  11. Johnson JMF, Wilhelm WW, Karlen DL, Archer DW, Wienhold B, Lightle DT, Laird D, Baker J, Ochsner TE, Novalk JM, Halvorson AD, Arriaga F, Barbour N (2010) Nutrient removal as a function of corn stover cutting height and cob harvest. Bioenerg Res 3:342–352

    Article  Google Scholar 

  12. Hoskinson RL, Karlen DL, Birrell SJ, Radtke CW, Wilhelm WW (2007) Engineering, nutrient removal, and feedstock conversion evaluations of four corn stover harvest scenarios. Biomass Bioenerg 31:126–136

    Article  CAS  Google Scholar 

  13. Halvorson AD, Johnson JMF (2009) Corn cob characteristics in irrigated Central Great Plains studies. Agron J 101:390–399

    Article  CAS  Google Scholar 

  14. Sindelar AJ, Lamb JA, Sheaffer CC, Rosen CJ, Jung HG (2013) Fertilizer nitrogen rate effects on nutrient removal by corn stover and cobs. Agron J 105:437–445

    Article  CAS  Google Scholar 

  15. Wienhold BJ, Gilley JE (2010) Cob removal effect on sediment and runoff nutrient loss from a silt loam soil. Agron J 102:1448–1452

    Article  CAS  Google Scholar 

  16. Schmer MR, Dose HL (2014) Cob biomass supply for combined heat and power and biofuel in the north central USA. Biomass Bioenerg 64:321–328

    Article  Google Scholar 

  17. Erickson MJ, Dobbins C, Tyner WE (2011) The economics of harvesting corn cobs for energy. Crop Manage. doi:10.1094/CM-2011-0324-02-RS

    Google Scholar 

  18. Lewis MF, Lorenzana RE, Jung HG, Bernardo R (2010) Potential for simultaneous improvement of corn grain yield and stover quality for cellulosic ethanol. Crop Sci 50:516–523

    Article  CAS  Google Scholar 

  19. Lorenz AJ, Coors JG, de Leon N, Wolfrum EJ, Hames BR, Sluiter AD, Weimer PJ (2009) Characterization, genetic variation, and combining ability of maize traits relevant to the production of cellulosic ethanol. Crop Sci 49:85–98

    Article  CAS  Google Scholar 

  20. Sindelar AJ, Lamb JA, Sheaffer CC, Jung HG, Rosen CJ (2012) Response of corn grain, cellulosic biomass, and ethanol yields to nitrogen fertilization. Agron J 104:363–370

    Article  Google Scholar 

  21. Wilhelm WW, Johnson JMF, Lightle DT, Karlen DL, Novak JM, Barbour NW, Laird DA, Baker J, Ochsner TE, Halvorson AD, Archer DW, Arriaga F (2011) Vertical distribution of corn stover dry mass grown at several US locations. Bioenerg Res 4:11–21

    Article  Google Scholar 

  22. Varvel GE, Wilhelm WW (2008) Cob biomass production in the western Corn Belt. Bioenerg Res 1:223–228

    Article  Google Scholar 

  23. Kadam KL, McMillan JD (2003) Availability of corn stover as a sustainable feedstock for bioethanol production. Boresourc Technol 88:17–25

    Article  CAS  Google Scholar 

  24. Karlen DL, Johnson JMF (2014) Crop residue considerations for sustainable bioenergy feedstock supplies. Bioenerg Res 7:465–467

    Article  CAS  Google Scholar 

  25. Sindelar AJ, Coulter JA, Lamb JA, Vetsch JA (2013) Agronomic responses of continuous corn to stover, tillage, and nitrogen management. Agron J 105:1498–1506

    Article  Google Scholar 

  26. Vetsch JA, Randall GW (2004) Corn production as affected by nitrogen application timing and tillage. Agron J 96:502–509

    Article  Google Scholar 

  27. Linden DR, Clapp CE, Dowdy RH (2000) Long-term corn grain and stover yields as a function of tillage and residue removal in east central Minnesota. Soil Till Res 56:167–174

    Article  Google Scholar 

  28. Kaiser D, Lamb J, Eliason R (2011) BU-0264-S. St. Paul, Univ. of Minnesota Ext., Fertilizer guidelines for agronomic crops in Minnesota

    Google Scholar 

  29. Theander O, Aman P, Westerlund E, Anderson R, Peterson D (1995) Total dietary fiber determined as neutral sugar residues, uronic acid residues, and Klason lignin (the Uppsala method): collaborative study. J AOAC Int 78:1030–1044

    CAS  PubMed  Google Scholar 

  30. SAS Institute (2006) The SAS system for Windows. Version 9.2. Cary, NC, SAS Inst

    Google Scholar 

  31. Weisberg S (2005) Applied linear regression, 3rd edn. Wiley Interscience, Hoboken, NJ

    Book  Google Scholar 

  32. Johnson JMF, Reicosky D, Allmaras R, Archer D, Wilhelm W (2006) A matter of balance: conservation and renewable energy. J Soil Water Conserv 61:120A–125A

    Google Scholar 

  33. Wilhelm WW, Johnson JMF, Karlen DL, Lightle DT (2007) Corn stover to sustain soil organic carbon further constrains biomass supply. Agron J 99:1665–1667

    Article  CAS  Google Scholar 

  34. Johnson JMF, Novak JM, Varvel GE, Stott DE, Osborne SL, Karlen DL, Lamb JA, Baker J, Alder PR (2014) Crop residue mass needed to maintain soil organic carbon levels: can it be determined? Bioenerg Res 7:481–490

    Article  CAS  Google Scholar 

  35. Kumar P, Barrett DM, Welwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  36. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  37. Crofcheck CL, Montross MD (2004) Effect of stover fraction on glucose production using enzymatic hydrolysis. Trans ASAE 47:841–844

    Article  CAS  Google Scholar 

  38. Shinners KJ, Boettcher GC, Hoffman DS, Munk JT, Muck RE, Weimer PJ (2009) Single-pass harvest of corn grain and stover: performance of three harvester configurations. Trans ASABE 52:51–60

    Article  Google Scholar 

  39. Vadas PA, Digman MF (2013) Production costs of potential corn stover harvest and storage systems. Biomass Bioenerg 54:133–139

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this product was provided by the Minnesota Corn Growers Research and Promotion Council. The authors thank Dr. Hans Jung for his contributions to the study. Mention of trade or commercial product names is soley for informational purposes and does not imply recommendation or approval by the USDA. The USDA is an equal opportunity employer and provider.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron J. Sindelar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sindelar, A.J., Lamb, J.A., Coulter, J.A. et al. Nitrogen and Tillage Management Affect Corn Cellulosic Yield, Composition, and Ethanol Potential. Bioenerg. Res. 8, 1284–1291 (2015). https://doi.org/10.1007/s12155-015-9586-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9586-1

Keywords

Navigation