Skip to main content

Advertisement

Log in

The Effect of Nitrogen, Phosphorus, and Potassium Fertilizers on Prairie Biomass Yield, Ethanol Yield, and Nutrient Harvest

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Native prairie plants can be managed to provide biomass for cellulosic ethanol production; however, there is inadequate information in northern latitudes regarding the effects of fertilizers on biomass and ethanol yields. We evaluated biomass yield, land ethanol yield (theoretical ethanol production per unit area), and nutrient harvest in grasslands managed across a gradient of nitrogen (N), phosphorus (P), and potassium (K) fertilizers at three locations in MN, USA, from 2008 to 2009. The Austin and Lamberton locations were planted with a mixture of prairie plants, while the Rosemount location was solely switchgrass (Panicum virgatum L.). Model-based estimations of agronomically optimum nitrogen rates (AONRs) for land ethanol yield were determined for five of six site-year environments. Five response functions were modeled for land ethanol yield, each predicting a unique AONR with varying degrees of confidence. The linear plateau function was best-supported for four of six environments. Agronomically optimum nitrogen rates ranged from 61 to 87 kg N ha−1 and, on average, yielded 3,160, 2,090, and 3,180 L ethanol ha−1 at Austin, Lamberton, and Rosemount, respectively. On average, predicted ethanol yields increased 52 % when fertilized at AONRs compared to yields without fertilizer. Phosphorus and K fertilizers did not affect land ethanol yield. Nitrogen, P, and K removed during biomass harvest increased with N fertilization and averaged 31, 6, and 20 kg ha−1 at the AONRs. Nitrogen use efficiency declined with N fertilization during drier years. Modest rates of N fertilizer (between 60 and 90 kg N ha−1) can maximize cellulosic ethanol production in established northern latitude grasslands. Soil P and K should be monitored as nutrients are removed during repeated biomass harvests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. United States Department of Agriculture (2010) USDA biofuels strategic production report. Production 1–21. Washington, DC.

  2. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L et al (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325:270–271

    Article  CAS  PubMed  Google Scholar 

  3. Sanderson MA, Adler PR (2008) Perennial forages as second generation bioenergy crops. Int J Mol Sci 9:768–88. doi:10.3390/ijms9050768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Wang D, Lebauer DS, Dietze MC (2010) A quantitative review comparing the yield of switchgrass in monocultures and mixtures in relation to climate and management factors. GCB Bioenergy 2:16–25. doi:10.1111/j.1757-1707.2010.01035.x

    Article  Google Scholar 

  5. Heaton E, Voigt T, Long S (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30. doi:10.1016/j.biombioe.2003.10.005

    Article  Google Scholar 

  6. Marquard E, Weigelt A, Temperton VM, Roscher C, Schumacher J, Buchmann N et al (2009) Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology 90:3290–3302

    Article  PubMed  Google Scholar 

  7. Jarchow ME, Liebman M, Rawat V, Anex RP (2012) Functional group and fertilization affect the composition and bioenergy yields of prairie plants. GCB Bioenergy 4:671–679. doi:10.1111/j.1757-1707.2012.01184.x

    Article  CAS  Google Scholar 

  8. Pokorny ML, Sheley RL, Zabinski CA, Engel RE, Svejcar TJ, Borkowski JJ (2005) Plant functional group diversity as a mechanism for invasion resistance. Restor Ecol 13:448–459. doi:10.1111/j.1526-100X.2005.00056.x

    Article  Google Scholar 

  9. Fornara DA, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322. doi:10.1111/j.1365-2745.2007.01345.x

    Article  CAS  Google Scholar 

  10. Tilman D, Knops JMH, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302. doi:10.1126/science.277.5330.1300

    Article  CAS  Google Scholar 

  11. Mangan ME, Sheaffer C, Wyse DL, Ehlke NJ, Reich PB (2011) Native perennial grassland species for bioenergy: establishment and biomass productivity. Agron J 103:509–519. doi:10.2134/agronj2010.0360

    Article  Google Scholar 

  12. Gelfand I, Sahajpal R, Zhang X, Izaurralde RC, Gross KL, Robertson GP (2013) Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493:514–7. doi:10.1038/nature11811

    Article  CAS  PubMed  Google Scholar 

  13. Zamora DS, Wyatt GJ, Apostol KG, Tschirner U (2013) Biomass yield, energy values, and chemical composition of hybrid poplars in short rotation woody crop production and native perennial grasses in Minnesota, USA. Biomass Bioenergy 49:222–230. doi:10.1016/j.biombioe.2012.12.031

    Article  CAS  Google Scholar 

  14. Schmer MR, Liebig MA, Vogel KP, Mitchell RB (2011) Field-scale soil property changes under switchgrass managed for bioenergy. GCB Bioenergy 3:439–48

    Article  Google Scholar 

  15. Guretzky JA, Biermacher JT, Cook BJ, Kering MK, Mosali J (2010) Switchgrass for forage and bioenergy: harvest and nitrogen rate effects on biomass yields and nutrient composition. Plant Soil 339:69–81. doi:10.1007/s11104-010-0376-4

    Article  Google Scholar 

  16. Heggenstaller AH, Moore KJ, Liebman M, Anex RP (2009) Nitrogen influences biomass and nutrient partitioning by perennial, warm-season grasses. Agron J 101:1363–1371. doi:10.2134/agronj2008.0225x

    Article  CAS  Google Scholar 

  17. Tonn B, Thumm U, Claupein W (2010) Semi-natural grassland biomass for combustion: influence of botanical composition, harvest date and site conditions on fuel composition. Grass Forage Sci 65:383–397. doi:10.1111/j.1365-2494.2010.00758.x

    Article  CAS  Google Scholar 

  18. Kering MK, Butler TJ, Biermacher JT, Guretzky JA (2011) Biomass yield and nutrient removal rates of perennial grasses under nitrogen fertilization. Bioenergy Res 5:61–70. doi:10.1007/s12155-011-9167-x

    Article  Google Scholar 

  19. Dien B, Jung H, Vogel K, Casler M, Lamb J, Iten L et al (2006) Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass Bioenergy 30:880–891. doi:10.1016/j.biombioe.2006.02.004

    Article  CAS  Google Scholar 

  20. Schmer MR, Vogel KP, Mitchell RB, Dien BS, Jung HG, Casler MD (2012) Temporal and spatial variation in switchgrass biomass composition and theoretical ethanol yield. Agron J 104:54–64. doi:10.2134/agronj2011.0195

    Article  CAS  Google Scholar 

  21. Jungers JM, Fargione JE, Sheaffer CC, Wyse DL, Lehman C (2013) Energy potential of biomass from conservation grasslands in Minnesota, USA. PLoS One 8:e61209. doi:10.1371/journal.pone.0061209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Gillitzer PA, Wyse DL, Sheaffer CC, Taff SJ, Lehman C (2012) Biomass production potential of grasslands in the oak savanna region of Minnesota, USA. Bioenergy Res 6:131–141. doi:10.1007/s12155-012-9233-z

    Article  Google Scholar 

  23. Sindelar AJ, Lamb JA, Sheaffer CC, Jung HG, Rosen CJ (2012) Response of corn grain, cellulosic biomass, and ethanol yields to nitrogen fertilization. Agron J 104:363–370. doi:10.2134/agronj2011.0279

    Article  Google Scholar 

  24. Waramit N, Moore KJ, Heggenstaller AH (2011) Composition of native warm-season grasses for bioenergy production in response to nitrogen fertilization rate and harvest date. Agron J 103:655–662. doi:10.2134/agronj2010.0374

    Article  Google Scholar 

  25. Garten CT Jr, Brice DJ, Castro HF, Graham RL, Mayes MA, Phillips JR et al (2011) Response of “Alamo” switchgrass tissue chemistry and biomass to nitrogen fertilization in West Tennessee, USA. Agric Ecosyst Environ 140:289–297. doi:10.1016/j.agee.2010.12.016

    Article  CAS  Google Scholar 

  26. Vogel KP, Brejda JJ, Walters DT, Buxton DR (2002) Switchgrass biomass production in the midwest USA: harvest and nitrogen management. Agron J 94:413–420

    Article  Google Scholar 

  27. Boyer CN, Tyler DD, Roberts RK, English BC, Larson JA (2012) Switchgrass yield response functions and profit-maximizing nitrogen rates on four landscapes in Tennessee. Agron J 104:1579–1588. doi:10.2134/agronj2012.0179

    Article  Google Scholar 

  28. Jaynes DB (2010) Confidence bands for measured economically optimal nitrogen rates. Precis Agric 12:196–213. doi:10.1007/s11119-010-9168-3

    Article  Google Scholar 

  29. Hernandez JA, Mulla DJ (2008) Estimating uncertainty of economically optimum fertilizer rates. Agron J 100:1221–1229. doi:10.2134/agronj2007.0273

    Article  CAS  Google Scholar 

  30. Theander O, Aman P, Westerlund E, Andersson R, Petersson D (1995) Total dietary fiber determined as neutral sugar residues, uronic acid residues, and Klason Lignin (the Uppsala method): collaborative study. J AOAC Int 78:1030–1044

    CAS  PubMed  Google Scholar 

  31. Vogel KP, Dien BS, Jung HG, Casler MD, Masterson SD, Mitchell RB (2010) Quantifying actual and theoretical ethanol yields for switchgrass strains using NIRS analyses. Bioenergy Res 4:96–110. doi:10.1007/s12155-010-9104-4

    Article  Google Scholar 

  32. Shenk JS, Westerhaus MO (1991) Population structuring of near infrared spectra and modified partial least squares regression. Crop Sci 31:1548–1555

    Article  CAS  Google Scholar 

  33. Cerrato ME, Blackmer AM (1990) Comparison of models for describing corn yield response to nitrogen fertilizer. Agron J 82:138–143

    Article  Google Scholar 

  34. Bullock DG, Bullock DS (1994) Quadratic and quadratic-plus-plateau models for predicting optimal nitrogen rate of corn: a comparison. Agron J 86:191–195

    Article  Google Scholar 

  35. R Development Core Team (2010) R: A language and environment for statistical computing.

  36. Baty F, Delignette-Muller ML (2012) nlstools: tools for nonlinear regression diagnostics.

  37. Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach., Second. 496.

  38. Arnold TW (2010) Uninformative parameters and model selection using Akaike’s Information Criterion. J Wildl Manag 74:1175–1178. doi:10.2193/2009-367

    Article  Google Scholar 

  39. Haque M, Epplin F, Taliaferro C (2009) Nitrogen and harvest frequency effect on yield and cost for four perennial grasses. Agron J 101:1463–1469. doi:10.2134/agronj2009.0193

    Article  CAS  Google Scholar 

  40. Mulkey VR, Owens VN, Lee DK (2006) Management of switchgrass-dominated Conservation Reserve Program lands for biomass production in South Dakota. Crop Sci 46:712–720. doi:10.2135/cropsci2005.04-0007

    Article  CAS  Google Scholar 

  41. Lee D, Aberle E, Chen C, Engenolf J, Harmoney K, Kakani G et al (2013) Nitrogen and harvest management of Conservation Reserve Program (CRP) grassland for sustainable biomass feedstock production. GCB Bioenergy 5:6–15. doi:10.1111/j.1757-1707.2012.01177.x

    Article  Google Scholar 

  42. Kayser M, Isselstein J (2005) Potassium cycling and losses in grassland systems: a review. Grass Forage Sci 60:213–224. doi:10.1111/j.1365-2494.2005.00478.x

    Article  CAS  Google Scholar 

  43. Karlen DL, Birell SJ, Hess JR (2011) A five-year assessment of corn stover harvest in central Iowa, USA. Soil Tillage 115–116:47–55

    Article  Google Scholar 

  44. Zemenchik RA, Albrecht KA (2002) Nitrogen use efficiency and apparent nitrogen recovery of Kentucky bluegrass, smooth bromegrass, and orchardgrass. Agron J 94:421–428

    Article  Google Scholar 

  45. Jacobsen JS, Lorbeer SH, Houlton HAR, Carlson GR (1996) Nitrogen fertilization of dryland grasses in the Northern Great Plains. J Range Manag 49:340–345

    Article  Google Scholar 

  46. Smith CM, David MB, Mitchell CA, Masters MD, Anderson-Teixeira KJ, Bernacchi CJ, DeLucia EH (2013) Reduced nitrogen losses after conversion of row crop agriculture to perennial biofuel crops. J Environ Qual 42:219–228. doi:10.2134/jeq2012.0210

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Minnesota Agricultural Experiment Station and Minnesota Agricultural Fertilizer Research and Education Council. We thank C. Lehman for the quantitative consultation and J. Vincent and J. Keville for their thoughtful comments on an early draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob M. Jungers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jungers, J.M., Sheaffer, C.C. & Lamb, J.A. The Effect of Nitrogen, Phosphorus, and Potassium Fertilizers on Prairie Biomass Yield, Ethanol Yield, and Nutrient Harvest. Bioenerg. Res. 8, 279–291 (2015). https://doi.org/10.1007/s12155-014-9525-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9525-6

Keywords

Navigation