Skip to main content

Advertisement

Log in

Mixed Trophic State Production Process for Microalgal Biomass with High Lipid Content for Generating Biodiesel and Biogas

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Economically feasible and sustainable energy production from microalgae requires optimization of algal growth, maximization of lipid content, and enhancement of biomass conversion into energy. An innovative, mixed trophic state process with high productivity was implemented to generate microalgae with high lipid content for generating biodiesel and biogas. Auxenochlorella protothecoides, a unicellular green alga, was grown phototrophically to 0.28 dry weight per L (gdw/L) then concentrated to 36 gdw/L for use as an inoculum for a subsequent heterotrophic cultivation to a final density of nearly 120 gdw/L. Simultaneous nitrogen deprivation and glucose supplementation during the heterotrophic stage increased the total lipid content from 16 to 57 % while the triacylglycerol (TAG) fraction of total lipids advanced from 2 to 79 %. Productivity peaked at 4.9 g of biomass/L-h and 1.7 g TAGs/L-h. The extracted lipids, including high levels of oleic, linoleic, and palmitic acids, were converted into biodiesel with a predicted cetane number of 56.4 and low concentrations of long-chain saturated and polyunsaturated fatty acid methyl esters. Both intact microalgal biomass and lipid-extracted algal residues (LEA) were good substrates for anaerobic digestion (AD) with methane yields of 0.6 and 0.4 L/g volatile solids (VS), respectively. These yields represented nearly 80 % of theoretical methane potential. LEA, with a favorable carbon to nitrogen ratio (C:N) of approximately 19:1, is an appropriate substrate for anaerobic microorganisms, most likely because it contains essential nutrients required for microbial digestion. The biochemical composition of the biomass, especially its lipid content, is the major contributor for energy output. As a result, coupling biodiesel production with AD of LEA to generate methane can increase the overall process’ energy output up to 40 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gladue RM, Maxey JE (1994) Microalgal feeds for aquaculture. J Appl Phycol 6(2):131–141. doi:10.1007/bf02186067

    Article  Google Scholar 

  2. Doucha J, Lívanský K (2011) Production of high-density Chlorella culture grown in fermenters. J Appl Phycol 24(1):35–43. doi:10.1007/s10811-010-9643-2

    Article  Google Scholar 

  3. Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K (2011) Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl Microbiol Biot 91(1):31–46. doi:10.1007/s00253-011-3311-6

    Article  CAS  Google Scholar 

  4. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126(4):499–507. doi:10.1016/j.jbiotec.2006.05.002

    Article  CAS  PubMed  Google Scholar 

  5. Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresource Technol 97(6):841–846. doi:10.1016/j.biortech.2005.04.008

    Article  CAS  Google Scholar 

  6. Wan M-X, Wang R-M, Xia J-L, Rosenberg JN, Nie Z-Y, Kobayashi N, Oyler GA, Betenbaugh MJ (2012) Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnol Bioeng 109(8):1958–1964. doi:10.1002/bit.24477

    Article  CAS  PubMed  Google Scholar 

  7. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416. doi:10.1016/j.biotechadv.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  8. Bohutskyi P, Bouwer E (2013) Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. In: Lee JW (ed) Advanced Biofuels and Bioproducts. Springer, New York, pp 873–975. doi:10.1007/978-1-4614-3348-4_36

  9. Huss VAR, Frank C, Hartmann EC, Hirmer M, Kloboucek A, Seidel BM, Wenzeler P, Kessler E (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J Phycol 35(3):587–598. doi:10.1046/j.1529-8817.1999.3530587.x

    Article  CAS  Google Scholar 

  10. Owen WF, Stuckey DC, Healy JB, Young LY, McCarty PL (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13(6):485–492. doi:10.1016/0043-1354(79)90043-5

    Article  CAS  Google Scholar 

  11. Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44(3):550–552. doi:10.1021/ie50507a033

    Article  CAS  Google Scholar 

  12. Eaton AD, Franson MAH (2005) Standard methods for the examination of water & wastewater, 21st edn. APHA, AWWA, and WEF, New York

    Google Scholar 

  13. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  14. Maynard LA, Loosli JK (1969) Animal nutrition, 6th edn. McGraw- Hill, New York

    Google Scholar 

  15. Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  16. Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technol 100(1):261–268. doi:10.1016/j.biortech.2008.06.039

    Article  CAS  Google Scholar 

  17. Sirisansaneeyakul S, Singhasuwan S, Choorit W, Phoopat N, Garcia JL, Chisti Y (2011) Photoautotrophic production of lipids by some Chlorella strains. Mar Biotechnol 13(5):928–941. doi:10.1007/s10126-010-9355-2

    Article  CAS  PubMed  Google Scholar 

  18. Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B (2013) Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae. Bioresource Technol 131:188–194. doi:10.1016/j.biortech.2012.12.143

    Article  CAS  Google Scholar 

  19. Přibyl P, Cepák V, Zachleder V (2014) Oil overproduction by means of microalgae. In: Bajpai R, Prokop A, Zappi M (eds) Algal Biorefineries. Springer, New York, pp 241–273. doi:10.1007/978-94-007-7494-0_10

    Google Scholar 

  20. Bohutskyi P, Liu K, Kessler BA, Kula T, Hong Y, Bouwer EJ, Betenbaugh MJ, Allnutt T (2014) Mineral and non-carbon nutrient utilization and recovery during sequential phototrophic-heterotrophic growth of lipid-rich algae. Appl Microbiol Biot. doi:10.1007/s00253-014-5655-1

  21. Xiong W, Li X, Xiang J, Wu Q (2007) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biot 78(1):29–36. doi:10.1007/s00253-007-1285-1

    Article  Google Scholar 

  22. Harrison P, Thompson P, Calderwood G (1990) Effects of nutrient and light limitation on the biochemical composition of phytoplankton. J Appl Phycol 2(1):45–56. doi:10.1007/bf02179768

    Article  Google Scholar 

  23. Kilham S, Kreeger D, Goulden C, Lynn S (1997) Effects of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus. Freshw Biol 38(3):591–596. doi:10.1046/j.1365-2427.1997.00231.x

    Article  CAS  Google Scholar 

  24. La Roche J, Geider RJ, Graziano LM, Murray H, Lewis K (1993) Induction of specific proteins in eukaryotic algae grown under iron-, phosphorus-, or nitrogen-deficient conditions. J Phycol 29(6):767–777. doi:10.1111/j.0022-3646.1993.00767.x

    Article  Google Scholar 

  25. Larson TR, Rees TAV (1996) Changes in cell composition and lipid metabolism mediated by sodium and nitrogen availability in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol 32(3):388–393. doi:10.1111/j.0022-3646.1996.00388.x

    Article  CAS  Google Scholar 

  26. Rhee G (1978) Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol Oceanogr 23(1):10–25

    Article  CAS  Google Scholar 

  27. Suen Y, Hubbard JS, Holzer G, Tornabene TG (1987) Total lipid production of the green alga Nannochloropsis sp. QII under different nitrogen regimes. J Phycol 23:289–296. doi:10.1111/j.1529-8817.1987.tb04137.x

    Article  CAS  Google Scholar 

  28. Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb Tech 5(6):435–440. doi:10.1016/0141-0229(83)90026-1

    Article  CAS  Google Scholar 

  29. Mizuno Y, Sato A, Watanabe K, Hirata A, Takeshita T, Ota S, Sato N, Zachleder V, Tsuzuki M, Kawano S (2013) Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species. Bioresource Technol 129:150–155. doi:10.1016/j.biortech.2012.11.030

    Article  CAS  Google Scholar 

  30. Chen M, Tang H, Ma H, Holland TC, Ng KYS, Salley SO (2010) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technol 102:1649–1655. doi:10.1016/j.biortech.2010.09.062

    Article  Google Scholar 

  31. Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507. doi:10.1007/s10811-008-9392-7

    Article  CAS  Google Scholar 

  32. Shihira-Ishikawa I, Hase E (1964) Nutritional control of cell pigmentation in Chlorella protothecoides with special reference to the degeneration of chloroplast induced by glucose. Plant cell physiol 5(2):227–240

    Google Scholar 

  33. Shigeji A, Mitsuo M, Eiji H (1965) De- and re-generation of chloroplasts in the cells of Chlorella protothecoides: V. Degeneration of chloroplasts induced by different carbon sources, and effects of some antimetabolites upon the process induced by glucose. Plant cell physiol 6(3):487–498

    Google Scholar 

  34. Hortensteiner S, Chinner J, Matile P, Thomas H, Donnison IS (2000) Chlorophyll breakdown in Chlorella protothecoides: characterization of degreening and cloning of degreening-related genes. Plant Mol Biol 42(3):439–450. doi:10.1023/a:1006380125438

    Article  CAS  PubMed  Google Scholar 

  35. Engel N, Jenny TA, Mooser V, Gossauer A (1991) Chlorophyll catabolism in Chlorella protothecoides. Isolation and structure elucidation of a red bilin derivative. FEBS Lett 293(1–2):131–133. doi:10.1016/0014-5793(91)81168-8

    Article  CAS  PubMed  Google Scholar 

  36. Oshio Y, Hase E (1969) Studies on red pigments excreted by cells of Chlorella protothecoides during the process of bleaching induced by glucose or acetate I. Chemical properties of the red pigments. Plant cell physiol 10(1):41–49

    CAS  Google Scholar 

  37. Bohutskyi P, Su C, Liu K, Nasr LK, Byers N, Betenbaugh MJ, Bouwer EJ (2013) Mixotrophic/Heterotrophic algae growth on a low-cost substrate: linking organic waste processing and microalgae cultivation. Poster presentation. In: 7th annual Algae Biomass Summit, Orlando, FL

  38. Li C, Yang H, Xia X, Li Y, Chen L, Zhang M, Zhang L, Wang W (2013) High efficient treatment of citric acid effluent by Chlorella vulgaris and potential biomass utilization. Bioresource Technol 127:248–255. doi:10.1016/j.biortech.2012.08.074

    Article  CAS  Google Scholar 

  39. Chen Y-H, Walker TH (2011) Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnol Lett 33(10):1973–1983. doi:10.1007/s10529-011-0672-y

    Article  CAS  PubMed  Google Scholar 

  40. O’Grady J, Morgan JA (2010) Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol. Bioproc Biosyst Eng 34(1):121–125. doi:10.1007/s00449-010-0474-y

    Article  Google Scholar 

  41. Pleissner D, Lam WC, Sun Z, Lin CSK (2013) Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresource Technol 137:139–146. doi:10.1016/j.biortech.2013.03.088

    Article  CAS  Google Scholar 

  42. Wei A, Zhang X, Wei D, Chen G, Wu Q, Yang S-T (2009) Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. J Industrial Microbiol Biot 36(11):1383–1389. doi:10.1007/s10295-009-0624-x

    Article  CAS  Google Scholar 

  43. Li P, Miao X, Li R, Zhong J (2011) In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. J Biomed Biotechnol 2011:1–8. doi:10.1155/2011/141207

    Google Scholar 

  44. Wang W, Zhou W, Liu J, Li Y, Zhang Y (2013) Biodiesel production from hydrolysate of Cyperus esculentus waste by Chlorella vulgaris. Bioresource Technol 136:24–29. doi:10.1016/j.biortech.2013.03.075

    Article  CAS  Google Scholar 

  45. Jiang X, Ren C, Hu C, Zhao Z (2013) Isolation and algicidal characterization of Bowmanella denitrificans S088 against Chlorella vulgaris. World J Microb Biot 30(2):621–629. doi:10.1007/s11274-013-1478-y

    Article  Google Scholar 

  46. Lawrence JE (2008) Furtive foes: algal viruses as potential invaders. ICES J Marine Sci 65(5):716–722. doi:10.1093/icesjms/fsn024

    Article  Google Scholar 

  47. Gutman J, Zarka A, Boussiba S (2009) The host-range of Paraphysoderma sedebokerensis, a chytrid that infects Haematococcus pluvialis. Eur J Phycol 44(4):509–514. doi:10.1080/09670260903161024

    Article  CAS  Google Scholar 

  48. Lukavsky J (1970) Phlyctidium scenedesmi, a chytrid destroying an outdoor mass culture of Scenedesmus obliqus. Nova Hedwig 19:775–777

    Google Scholar 

  49. Day JG, Thomas NJ, Achilles-Day UEM, Leakey RJG (2012) Early detection of protozoan grazers in algal biofuel cultures. Bioresource Technol 114:715–719. doi:10.1016/j.biortech.2012.03.015

    Article  CAS  Google Scholar 

  50. Zhang Y, Su H, Zhong Y, Zhang C, Shen Z, Sang W, Yan G, Zhou X (2012) The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products. Water Res 46(17):5509–5516. doi:10.1016/j.watres.2012.07.025

    Article  CAS  PubMed  Google Scholar 

  51. Bhadury P, Wright P (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219(4):561–578. doi:10.1007/s00425-004-1307-5

    Article  CAS  PubMed  Google Scholar 

  52. Hellio C, De La Broise D, Dufossé L, Le Gal Y, Bourgougnon N (2001) Inhibition of marine bacteria by extracts of macroalgae: potential use for environmentally friendly antifouling paints. Mar Environ Res 52(3):231–247. doi:10.1016/s0141-1136(01)00092-7

    Article  CAS  PubMed  Google Scholar 

  53. Gupta AB, Shrivastava GC (1965) On antibiotic properties of some fresh water algae. Hydrobiologia 25(1–2):285–288. doi:10.1007/bf00189868

    Article  Google Scholar 

  54. Bacellar Mendes L, Vermelho A (2013) Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol Biofuel 6(1):152. doi:10.1186/1754-6834-6-152

    Article  Google Scholar 

  55. Wolfe GV (2000) The chemical defense ecology of marine unicellular plankton: constraints, mechanisms, and impacts. Biol Bull 198(2):225–244

    Article  CAS  PubMed  Google Scholar 

  56. Natrah FMI, Kenmegne MM, Wiyoto W, Sorgeloos P, Bossier P, Defoirdt T (2011) Effects of micro-algae commonly used in aquaculture on acyl-homoserine lactone quorum sensing. Aquaculture 317(1–4):53–57. doi:10.1016/j.aquaculture.2011.04.038

    Article  CAS  Google Scholar 

  57. Defoirdt T, Boon N, Bossier P, Verstraete W (2004) Disruption of bacterial quorum sensing: an unexplored strategy to fight infections in aquaculture. Aquaculture 240(1–4):69–88. doi:10.1016/j.aquaculture.2004.06.031

    Article  Google Scholar 

  58. Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86(10):1059–1070. doi:10.1016/j.fuproc.2004.11.002

    Article  CAS  Google Scholar 

  59. Knothe G (2007) Some aspects of biodiesel oxidative stability. Fuel Process Technol 88(7):669–677. doi:10.1016/j.fuproc.2007.01.005

    Article  CAS  Google Scholar 

  60. Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresource Technol 102(1):106–110. doi:10.1016/j.biortech.2010.06.017

    Article  CAS  Google Scholar 

  61. Islam M, Magnusson M, Brown R, Ayoko G, Nabi M, Heimann K (2013) Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies 6(11):5676–5702. doi:10.3390/en6115676

    Article  CAS  Google Scholar 

  62. Tang H, Abunasser N, Garcia MED, Chen M, Simon Ng KY, Salley SO (2011) Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl Energ 88(10):3324–3330. doi:10.1016/j.apenergy.2010.09.013

    Article  CAS  Google Scholar 

  63. Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48(6):1146–1151. doi:10.1016/j.cep.2009.03.006

    Article  CAS  Google Scholar 

  64. Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinumby direct transesterification of algal biomass. Energ fuel 23(10):5179–5183. doi:10.1021/ef900704h

    Article  CAS  Google Scholar 

  65. Chen Y-H, Huang B-Y, Chiang T-H, Tang T-C (2012) Fuel properties of microalgae (Chlorella protothecoides) oil biodiesel and its blends with petroleum diesel. Fuel 94:270–273. doi:10.1016/j.fuel.2011.11.031

    Article  CAS  Google Scholar 

  66. Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98(4):764–771. doi:10.1002/bit.21489

    Article  CAS  PubMed  Google Scholar 

  67. Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sust Energ Rev 16(1):143–169. doi:10.1016/j.rser.2011.07.143

    Article  CAS  Google Scholar 

  68. Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4(11):241–244. doi:10.1016/0968-0004(79)90212-3

    Article  CAS  Google Scholar 

  69. Manichaikul A, Ghamsari L, Hom EF, Lin C, Murray RR, Chang RL, Balaji S, Hao T, Shen Y, Chavali AK, Thiele I, Yang X, Fan C, Mello E, Hill DE, Vidal M, Salehi-Ashtiani K, Papin JA (2009) Metabolic network analysis integrated with transcript verification for sequenced genomes. Nat Methods 6(8):589–592. doi:10.1038/nmeth.1348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Milner HW (1976) The chemical composition of algae. In: Burlew JS (ed) Algae culture: from laboratory to pilot plant. Carnegie Institution of Washington Publication, Washington, D.C., pp 285–303

    Google Scholar 

  71. Mendez L, Mahdy A, Timmers RA, Ballesteros M, González-Fernández C (2013) Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments. Bioresour Technol 149:136–141. doi:10.1016/j.biortech.2013.08.136

    Article  CAS  PubMed  Google Scholar 

  72. Ras M, Lardon L, Bruno S, Bernet N, Steyer J-P (2011) Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour Technol 102(1):200–206. doi:10.1016/j.biortech.2010.06.146

    Article  CAS  PubMed  Google Scholar 

  73. Eder B, Heinz S (2006) Biogas Praxis: Grundlagen, Planung, Anlagenbau, Beispiele, Wirtschaftlichkeit. Ökobuch Verlag u, Versand, Staufen, Deutschland

    Google Scholar 

  74. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064. doi:10.1016/j.biortech.2007.01.057

    Article  CAS  PubMed  Google Scholar 

  75. Khanal SK (2008) Anaerobic biotechnology for bioenergy production: principles and applications. Wiley-Blackwell, Ames, Iowa

    Book  Google Scholar 

  76. Kroeker EJ, Schulte DD, Sparling AB, Lapp HM (1979) Anaerobic treatment process stability. J WPCF 51(4):718–727. doi:10.2307/25039893

    CAS  Google Scholar 

  77. Feinberg DA (1984) Fuel options from microalgae with representative chemical compositions. Technical Report. Solar Energy Research Inst, Golden, CO (USA)

    Book  Google Scholar 

  78. Harun R, Davidson M, Doyle M, Gopiraj R, Danquah M, Forde G (2011) Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass Bioenerg 35(1):741–747. doi:10.1016/j.biombioe.2010.10.007

    Article  CAS  Google Scholar 

  79. Lardon L, Hélias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481. doi:10.1021/es900705jz

    Article  CAS  PubMed  Google Scholar 

  80. Knothe G (2014) A comprehensive evaluation of the cetane numbers of fatty acid methyl esters. Fuel 119:6–13. doi:10.1016/j.fuel.2013.11.020

    Article  CAS  Google Scholar 

  81. Uziel M (1978) Solar energy fixation and conversion with algal bacterial systems. PhD thesis, University of California, Berkeley

    Google Scholar 

  82. Ehimen EA, Sun ZF, Carrington CG, Birch EJ, Eaton-Rye JJ (2010) Anaerobic digestion of microalgae residues resulting from the biodiesel production process. App Energ 88(10):3454–3463

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from US DOE CCS Program (Grant no. DE-FE0001888 to Phycal), US NSF CBET Program (Grant no. 1236691 to JHU), and The Bureau of Education and Cultural Affairs of US Department of State though an International Fulbright Science and Technology Award to Pavlo Bohutskyi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlo Bohutskyi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohutskyi, P., Kula, T., Kessler, B.A. et al. Mixed Trophic State Production Process for Microalgal Biomass with High Lipid Content for Generating Biodiesel and Biogas. Bioenerg. Res. 7, 1174–1185 (2014). https://doi.org/10.1007/s12155-014-9453-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9453-5

Keywords

Navigation