Skip to main content
Log in

Chemistry and Microbial Functional Diversity Differences in Biofuel Crop and Grassland Soils in Multiple Geographies

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

We obtained soil samples from geographically diverse switchgrass (Panicum virgatum L.) and sorghum (Sorghum bicolor L.) crop sites and from nearby reference grasslands and compared their edaphic properties, microbial gene diversity and abundance, and active microbial biomass content. We hypothesized that soils under switchgrass, a perennial, would be more similar to reference grassland soils than sorghum, an annual crop. Sorghum crop soils had significantly higher NO3 -N, NH4 + -N, SO4 2− -S, and Cu levels than grassland soils. In contrast, few significant differences in soil chemistry were observed between switchgrass crop and grassland soils. Active bacterial biomass was significantly lower in sorghum soils than switchgrass soils. Using GeoChip 4.0 functional gene arrays, we observed that microbial gene diversity was significantly lower in sorghum soils than grassland soils. Gene diversity at sorghum locations was negatively correlated with NO3 -N, NH4 + -N, and SO4 2− -S in C and N cycling microbial gene categories. Microbial gene diversity at switchgrass sites varied among geographic locations, but crop and grassland sites tended to be similar. Microbial gene abundance did not differ between sorghum crop and grassland soils, but was generally lower in switchgrass crop soils compared to grassland soils. Our results suggest that switchgrass has fewer adverse impacts on microbial soil ecosystem services than cultivation of an annual biofuel crop such as sorghum. Multi-year, multi-disciplinary regional studies comparing these and additional annual and perennial biofuel crop and grassland soils are recommended to help define sustainable crop production and soil ecosystem service practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA et al (2006) The path forward for biofuels and biomaterials. Sci 311(5760):484–489. doi:10.1126/science.1114736

    Article  CAS  Google Scholar 

  2. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Sci 319(5867):1235–1238. doi:10.1126/science.1152747

    Article  CAS  Google Scholar 

  3. Carroll A, Somerville C (2009) Cellulosic biofuels. Annual Rev Plant Biology 60(1):165–182. doi:10.1146/annurev.arplant.043008.092125

    Article  CAS  Google Scholar 

  4. Davis SC, Anderson-Teixeira KJ, DeLucia EH (2009) Life-cycle analysis and the ecology of biofuels. Trends Plant Sci 14(3):140–146

    Article  PubMed  CAS  Google Scholar 

  5. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L et al (2009) Beneficial biofuels—the food, energy, and environment trilemma. Sci 325(5938):270–271. doi:10.1126/science.1177970

    Article  CAS  Google Scholar 

  6. Moon HS, Abercrombie JM, Kausch AP, Stewart CN Jr (2010) Sustainable use of biotechnology for bioenergy feedstocks. Environ Manag 46(4):531–538. doi:10.1007/s00267-010-9503-5

    Article  Google Scholar 

  7. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS 103(30):11206–11210. doi:10.1073/pnas.0604600103

    Article  PubMed  CAS  Google Scholar 

  8. Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nat 379(6567):718–720

    Article  CAS  Google Scholar 

  9. Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Sci 277(5330):1302–1305

    Article  CAS  Google Scholar 

  10. Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Sci 314(5805):1598–1600. doi:10.1126/science.1133306

    Article  CAS  Google Scholar 

  11. Dale VH, Kline KL, Wiens J, Fargione J (2010) Biofuels: implications for land use and biodiversity. Ecological Society of America, Washington, DC

    Google Scholar 

  12. Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M et al (2012) Plant species richness and ecosystem multifunctionality in global drylands. Sci 335(6065):214–218. doi:10.1126/science.1215442

    Article  CAS  Google Scholar 

  13. Midgley GF (2012) Biodiversity and ecosystem function. Sci 335(6065):174–175. doi:10.1126/science.1217245

    Article  CAS  Google Scholar 

  14. Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Sci 277(5330):1300–1302. doi:10.1126/science.277.5330.1300

    Article  CAS  Google Scholar 

  15. Dobranic JK, Zak JC (1999) A microtiter plate procedure for evaluating fungal functional diversity. Mycologia 91(5):756–765

    Article  Google Scholar 

  16. Bossio DA, Girvan MS, Verchot L, Bullimore J, Borelli T, Albrecht A et al (2005) Soil microbial community response to land use change in an agricultural landscape of western Kenya. Microb Ecol 49(1):50–62. doi:10.1007/s00248-003-0209-6

    Article  PubMed  CAS  Google Scholar 

  17. He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC et al (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1(1):67–77, http://www.nature.com/ismej/journal/v1/n1/suppinfo/ismej20072s1.html

    Article  PubMed  CAS  Google Scholar 

  18. Yergeau E, Kang S, He Z, Zhou J, Kowalchuk GA (2007) Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISME J 1(2):163–179, http://www.nature.com/ismej/journal/v1/n2/suppinfo/ismej200724s1.html

    Article  PubMed  CAS  Google Scholar 

  19. Zhang Y, Zhang X, Liu X, Xiao Y, Qu L, Wu L et al (2007) Microarray-based analysis of changes in diversity of microbial genes involved in organic carbon decomposition following land use/cover changes. FEMS Microbiol Lett 266(2):144–151. doi:10.1111/j.1574-6968.2006.00511.x

    Article  PubMed  CAS  Google Scholar 

  20. Zhou J, Kang S, Schadt CW, Garten CT Jr (2008) Spatial scaling of functional gene diversity across various microbial taxa. PNAS 105(22):7768–7773. doi:10.1073/pnas.0709016105

    Article  PubMed  CAS  Google Scholar 

  21. Berthrong ST, Schadt CW, Piñeiro G, Jackson RB (2009) Afforestation alters the composition of functional genes in soil and biogeochemical processes in South American grasslands. Appl Environ Microbiol 75(19):6240–6248. doi:10.1128/aem.01126-09

    Article  PubMed  CAS  Google Scholar 

  22. Da C Jesus E, Susilawati E, Smith S, Wang Q, Chai B, Farris R et al (2010) Bacterial communities in the rhizosphere of biofuel crops grown on marginal lands as evaluated by 16S rRNA gene pyrosequences. BioEnergy Res 3(1):20–27

    Article  Google Scholar 

  23. Lu Z, Deng Y, Van Nostrand JD, He Z, Voordeckers J, Zhou A et al (2012) Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME J 6(2):451–460, http://www.nature.com/ismej/journal/vaop/ncurrent/suppinfo/ismej201191s1.html

    Article  PubMed  CAS  Google Scholar 

  24. DeSantis T, Brodie E, Moberg J, Zubieta I, Piceno Y, Andersen G (2007) High-density universal 16S rRNA Microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53(3):371–383. doi:10.1007/s00248-006-9134-9

    Article  PubMed  CAS  Google Scholar 

  25. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM et al (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33(suppl 1):D294–D296. doi:10.1093/nar/gki038

    PubMed  CAS  Google Scholar 

  26. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ et al (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(suppl 1):D141–D145. doi:10.1093/nar/gkn879

    Article  PubMed  CAS  Google Scholar 

  27. McGrath KC, Mondav R, Sintrajaya R, Slattery B, Schmidt S, Schenk PM (2010) Development of an environmental functional gene microarray for soil microbial communities. Appl Environ Microbiol 76(21):7161–7170. doi:10.1128/aem.03108-09

    Article  PubMed  CAS  Google Scholar 

  28. Horneck DA, Hart JM, Topper K, Koepsell B (1989) Methods of soil analysis used in the Soil Testing Laboratory at Oregon State University. Agricultural Experiment Station, Oregon State University, Corvallis

    Google Scholar 

  29. Ingham ER, Klein DA (1984) Soil fungi: relationships between hyphal activity and staining with fluorescein diacetate. Soil Biol Biochem 16(3):273–278. doi:10.1016/0038-0717(84)90014-2

    Article  CAS  Google Scholar 

  30. Schnürer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbiol 43(6):1256–1261

    PubMed  Google Scholar 

  31. Van Veen JA, Ladd JN, Frissel MJ (1984) Modelling C and N turnover through the microbial biomass in soil. Plant Soil 76(1):257–274. doi:10.1007/bf02205585

    Article  Google Scholar 

  32. Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N et al (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Sci 330(6001):204–208. doi:10.1126/science.1195979

    Article  CAS  Google Scholar 

  33. He Z, Deng Y, Van Nostrand JD, Tu Q, Xu M, Hemme CL et al (2010) GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J 4(9):1167–1179, http://www.nature.com/ismej/journal/v4/n9/suppinfo/ismej201046s1.html

    Article  PubMed  CAS  Google Scholar 

  34. Wu L, Liu X, Schadt CW, Zhou J (2006) Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. Appl Environ Microbiol 72(7):4931–4941. doi:10.1128/aem.02738-05

    Article  PubMed  CAS  Google Scholar 

  35. Liang Y, He Z, Wu L, Deng Y, Li G, Zhou J (2010) Development of a common oligonucleotide reference standard for microarray data normalization and comparison across different microbial communities. Appl Environ Microbiol 76(4):1088–1094. doi:10.1128/aem.02749-09

    Article  PubMed  CAS  Google Scholar 

  36. He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L et al (2010) Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecol Lett 13(5):564–575. doi:10.1111/j.1461-0248.2010.01453.x

    Article  PubMed  Google Scholar 

  37. Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol 69(3):1800–1809. doi:10.1128/aem.69.3.1800-1809.2003

    Article  PubMed  CAS  Google Scholar 

  38. Bezemer TM, Lawson CS, Hedlund K, Edwards AR, Brook AJ, Igual JM et al (2006) Plant species and functional group effects on abiotic and microbial soil properties and plant-soil feedback responses in two grasslands. J Ecol 94(5):893–904. doi:10.1111/j.1365-2745.2006.01158.x

    Article  CAS  Google Scholar 

  39. Pereira e Silva MC, Poly F, Guillaumaud N, van Elsas JD, Falcao Salles J (2012) Fluctuations in ammonia oxidizing communities across agricultural soils are driven by soil structure and pH. Front Microbiol 3. doi:10.3389/fmicb.2012.00077

  40. Di Giovanni GD, Watrud LS, Seidler RJ, Widmer F (1999) Comparison of parental and transgenic alfalfa rhizosphere bacterial communities using biolog GN metabolic fingerprinting and enterobacterial repetitive intergenic consensus sequence-PCR (ERIC-PCR). Microb Ecol 37(2):129–139. doi:10.1007/s002489900137

    Article  PubMed  Google Scholar 

  41. Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30(3):369–378. doi:10.1016/s0038-0717(97)00124-7

    Article  CAS  Google Scholar 

  42. Latour X, Corberand T, Laguerre G, Allard F, Lemanceau P (1996) The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl Environ Microbiol 62(7):2449–2456

    PubMed  CAS  Google Scholar 

  43. Ben-Hammouda M, Kremer RJ, Minor HC (1995) Phytotoxicity of extracts from sorghum plant components on wheat seedlings. Crop Sci 35(6):1652–1656

    Article  CAS  Google Scholar 

  44. Czarnota MA, Paul RN, Dayan FE, Nimbal CI, Weston LA (2001) Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technol 15(4):813–825

    Article  CAS  Google Scholar 

  45. Weston LA, Harmon R, Mueller S (1989) Allelopathic potential of sorghum-sudangrass hybrid (sudex). J Chem Ecol 15(6):1855–1865

    Article  Google Scholar 

  46. Coelho MRR, Marriel IE, Jenkins SN, Lanyon CV, Seldin L, O’Donnell AG (2009) Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer. Appl Soil Ecol 42(1):48–53. doi:10.1016/j.apsoil.2009.01.010

    Article  Google Scholar 

  47. Hai B, Diallo NH, Sall S, Haesler F, Schauss K, Bonzi M et al (2009) Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Appl Environ Microbiol 75(15):4993–5000. doi:10.1128/aem.02917-08

    Article  PubMed  CAS  Google Scholar 

  48. Coelho MRR, Da Mota FF, Carneiro NP, Marriel IE, Paiva E, Rosado AS et al (2007) Diversity of Paenibacillus spp. in the rhizosphere of four sorghum (Sorghum bicolor) cultivars sown with two contrasting levels of nitrogen fertilizer assessed by rpoB-based PCR-DGGE and sequencing analysis. J Microbiol Biotechnol 17(5):753–760

    PubMed  CAS  Google Scholar 

  49. Mao Y, Yannarell AC, Mackie RI (2011) Changes in N-transforming Archaea and bacteria in soil during the establishment of bioenergy crops. PLoS One 6(9):12. doi:10.1371/journal.pone.0024750, e24750

    Article  Google Scholar 

  50. Culman SW, DuPont ST, Glover JD, Buckley DH, Fick GW, Ferris H et al (2010) Long-term impacts of high-input annual cropping and unfertilized perennial grass production on soil properties and belowground food webs in Kansas, USA. Agr Ecosyst Environ 137(1–2):13–24, 10.1016/j.agee.2009.11.008

    Article  Google Scholar 

  51. Liang C, EdC J, Duncan DS, Jackson RD, Tiedje JM, Balser TC (2012) Soil microbial communities under model biofuel cropping systems in southern Wisconsin, USA: impact of crop species and soil properties. Appl Soil Ecol 54:24–31. doi:10.1016/j.apsoil.2011.11.015

    Article  Google Scholar 

  52. Arriola PE, Ellstrand NC (1996) Crop-to-weed gene flow in the genus Sorghum (Poaceae): spontaneous interspecific hybridization between johnsongrass, Sorghum halepense, and crop sorghum. S Bicolor American J Botany 83(9):1153–1159

    Article  Google Scholar 

  53. Skinner K, Smith L, Rice PM (2000) Using noxious weed lists to prioritize targets for developing weed management strategies. Weed Sci 48(5):640–644

    Article  CAS  Google Scholar 

  54. Warwick SI, Black LD (1983) The biology of Canadian weeds. 61. Sorghum halepense (L.) Pers. Canadian J Plant Sci 63(4):997–1014

    Article  Google Scholar 

  55. Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nat 427(6976):731–733

    Article  CAS  Google Scholar 

  56. Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytol 170(3):445–457. doi:10.1111/j.1469-8137.2006.01715.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank their respective staff who participated in providing soil samples, photographs, GPS coordinates, and other background information for each of the crop and non-crop sampling locations. This research was funded in part by a United States Environmental Protection Agency (USEPA) Office of Research and Development National Health and Environmental Effects Research Laboratory intramural competitive award to LSW and RJF and by EPA contracts to Dynamac Corporation (EP-D-06-013 and EP-D-11–027). Mention of trade names or commercial products does not imply endorsement for use. The views of the authors do not necessarily reflect those of the Agency. This manuscript has undergone administrative and technical reviews to receive Agency approval for submission for publication in a peer-reviewed scientific journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia S. Watrud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watrud, L.S., Reichman, J.R., Bollman, M.A. et al. Chemistry and Microbial Functional Diversity Differences in Biofuel Crop and Grassland Soils in Multiple Geographies. Bioenerg. Res. 6, 601–619 (2013). https://doi.org/10.1007/s12155-012-9279-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-012-9279-y

Keywords

Navigation