Skip to main content
Log in

A Highly Efficient NADH-dependent Butanol Dehydrogenase from High-butanol-producing Clostridium sp. BOH3

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Butanol has been considered as a better alternative fuel and it can be produced from anaerobic Clostridial fermentation. Though several enzymes are involved in the biosynthesis of butanol in Clostridia, butanol dehydrogenase (BDH) is understood to play a major role, which catalyzes the conversion of butyraldehyde into butanol at the expenditure of a cofactor NAD(P)H. Recently, the strain Clostridium sp. BOH3 is reported to generate high level of butanol from monosugars. To investigate the BDH activity at various stages of fermentation, BOH3 was cultured in reinforced Clostridial medium with 30 g/l of glucose at 35 °C and the cells were harvested periodically from acid production and solvent production phases. During acid production, NADPH-dependent BDH activity is higher than NADH dependent BDH. Conversely, NADH-BDH activity is predominant during solvent production phase. The optimum pHs for NADH and NADPH-BDH are estimated as pH 6 and 8, respectively. By employing three steps of purification, NADH-BDH is purified to 102-fold with 36 % yield. Subsequent characterization reveals that NADH-BDH is a dimer composed of two subunits depicting the molecular weight of 44 kDa. The peptide finger printing analysis (MS/MS) suggests that the purified protein has higher homology with bifunctional acetaldehyde-CoA and alcohol dehydrogenase of Clostridium acetobutylicum. The extensive kinetic studies show that NADH-BDH follows an ordered sequential bi bi mechanism. The calculated values of K butyraldehyde and K NADH are 8.35 ± 0.25 and 0.076 ± 0.02 mM, respectively, whereas V max is 4.02 ± 0.07 μmol/(mg protein. min). The purified NADH-BDH retains 70 % of its initial activity after 7 days at 4 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Durre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534

    Article  PubMed  Google Scholar 

  2. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Combust 37:52–68

    Article  CAS  Google Scholar 

  3. Ahn JH, Sang BI, Um Y (2011) Butanol production from thin stillage using Clostridium pasteurianum. Bioresour Technol 102:4934–4937

    Article  PubMed  CAS  Google Scholar 

  4. Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energ 88:1999–2012

    Article  CAS  Google Scholar 

  5. Radianingtyas H, Wright PC (2003) Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol Rev 27:593–616

    Article  PubMed  CAS  Google Scholar 

  6. Li RD, Li YY, Lu LY et al (2011) An improved kinetic model for the acetone–butanol–ethanol pathway of Clostridium acetobutylicum and model-based perturbation analysis. BMC Syst Biol 5 Suppl 1:S12

    Article  Google Scholar 

  7. Zheng YN, Li LZ, Xian M et al (2009) Problems with the microbial production of butanol. J Ind Microbiol Biotechnol 36:1127–1138

    Article  PubMed  CAS  Google Scholar 

  8. Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4:32

    Article  PubMed  CAS  Google Scholar 

  9. Dunlop MJ, Dossani ZY, Szmidt HL et al (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7:487

    Article  PubMed  Google Scholar 

  10. Huang H, Liu H, Gan YR (2010) Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol Adv 28:651–657

    Article  PubMed  CAS  Google Scholar 

  11. Lehmann D, Lutke-Eversloh T (2011) Switching Clostridium acetobutylicum to an ethanol producer by disruption of the butyrate/butanol fermentative pathway. Metab Eng 13:464–473

    Article  PubMed  CAS  Google Scholar 

  12. Yu M, Zhang Y, Tang IC et al (2011) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab Eng 13:373–382

    Article  PubMed  CAS  Google Scholar 

  13. Ezeji T, Blaschek HP (2008) Fermentation of dried distillers' grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresour Technol 99:5232–5242

    Article  PubMed  CAS  Google Scholar 

  14. Shi Z, Blaschek HP (2008) Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis. Appl Environ Microbiol 74:7709–7714

    Article  PubMed  CAS  Google Scholar 

  15. Wang Y, Blaschek HP (2011) Optimization of butanol production from tropical maize stalk juice by fermentation with Clostridium beijerinckii NCIMB 8052. Bioresour Technol 102:9985–9990

    Article  PubMed  CAS  Google Scholar 

  16. Bramono SE, Lam YS, Ong SL et al (2011) A mesophilic Clostridium species that produces butanol from monosaccharides and hydrogen from polysaccharides. Bioresour Technol 102:9558–9563

    Article  PubMed  CAS  Google Scholar 

  17. Gheshlaghi R, Scharer JM, Moo-Young M et al (2009) Metabolic pathways of Clostridia for producing butanol. Biotechnol Adv 27:764–781

    Article  PubMed  CAS  Google Scholar 

  18. Ezeji T, Milne C, Price ND et al (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol 85:1697–1712

    Article  PubMed  CAS  Google Scholar 

  19. Garcíaa V, Päkkiläa J, Ojamob H et al (2011) Challenges in biobutanol production: how to improve the efficiency? Renew Sust Energ Rev 15:964–980

    Article  Google Scholar 

  20. Bennett GN, Rudolph FB (1995) The central metabolic pathway from acetyl-CoA to butyryl-CoA in Clostridium acetobutylicum. FEMS Microbiol Rev 17:241–249

    Article  CAS  Google Scholar 

  21. Lee SY, Park JH, Jang SH et al (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101:209–228

    Article  PubMed  CAS  Google Scholar 

  22. Brown SD, Guss AM, Karpinets TV et al (2011) Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc Natl Acad Sci 108:13752–13757

    Article  PubMed  CAS  Google Scholar 

  23. Green EM, Bennett GN (1996) Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. Appl Biochem Biotechnol 57–58:213–221

    Article  PubMed  Google Scholar 

  24. Adsul MG, Singhvi MS, Gaikaiwari SA et al (2011) Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresour Technol 102:4304–4312

    Article  PubMed  CAS  Google Scholar 

  25. Durre P, Kuhn A, Gottwald M et al (1987) Enzymatic investigations on butanol dehydrogenase and butyraldehyde dehydrogenase in extracts of Clostridium acetobutylicum. Appl Microbiol Biotechnol 26:268–272

    Article  Google Scholar 

  26. Petersen DJ, Welch RW, Rudolph FB et al (1991) Molecular cloning of an alcohol (butanol) dehydrogenase gene cluster from Clostridium acetobutylicum ATCC 824. J Bacteriol 173:1831–1834

    PubMed  CAS  Google Scholar 

  27. Terracciano JS, Kashket ER (1986) Intracellular conditions required for initiation of solvent production by Clostridium acetobutylicum. Appl Environ Microbiol 52:86–91

    PubMed  CAS  Google Scholar 

  28. Hiu SF, Zhu CX, Yan RT et al (1987) Butanol–ethanol dehydrogenase and butanol-ethanol-isopropanol dehydrogenase: different alcohol dehydrogenases in two strains of Clostridium beijerinckii (Clostridium butylicum). Appl Environ Microbiol 53:697–703

    PubMed  CAS  Google Scholar 

  29. Welch RW, Rudolph FB, Papoutsakis ET (1989) Purification and characterization of the NADH-dependent butanol dehydrogenase from Clostridium acetobutylicum (ATCC 824). Arch Biochem Biophys 273:309–318

    Article  PubMed  CAS  Google Scholar 

  30. Cleland WW (1963) The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta 67:104–137

    Article  PubMed  CAS  Google Scholar 

  31. Cleland WW (1989) The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. 1963. Biochim Biophys Acta 1000:213–220

    PubMed  CAS  Google Scholar 

  32. Durre P, Fischer RJ, Kuhn A et al (1995) Solventogenic enzymes of Clostridium acetobutylicum: catalytic properties, genetic organization, and transcriptional regulation. FEMS Microbiol Rev 17:251–262

    Article  PubMed  CAS  Google Scholar 

  33. Girbal L, Soucaille P (1998) Regulation of solvent production in Clostridium acetobutylicum. Trends Biotechnol 16:11–16

    Article  CAS  Google Scholar 

  34. Chen JS (1995) Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing Clostridia. FEMS Microbiol Rev 17:263–273

    Article  PubMed  CAS  Google Scholar 

  35. Walter KA, Bennett GN, Papoutsakis ET (1992) Molecular characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes. J Bacteriol 174:7149–7158

    PubMed  CAS  Google Scholar 

  36. Youngleson JS, Jones WA, Jones DT et al (1989) Molecular analysis and nucleotide sequence of the adh1 gene encoding an NADPH-dependent butanol dehydrogenase in the Gram-positive anaerobe Clostridium acetobutylicum. Gene 78:355–364

    Article  PubMed  CAS  Google Scholar 

  37. Ismaiel AA, Zhu CX, Colby GD et al (1993) Purification and characterization of a primary–secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. J Bacteriol 175:5097–5105

    PubMed  CAS  Google Scholar 

  38. Adolph HW, Zwart P, Meijers R et al (2000) Structural basis for substrate specificity differences of horse liver alcohol dehydrogenase isozymes. Biochemistry 39:12885–12897

    Article  PubMed  CAS  Google Scholar 

  39. Herdendorf TJ, Plapp BV (2011) Origins of the high catalytic activity of human alcohol dehydrogenase 4 studied with horse liver A317C alcohol dehydrogenase. Chem Biol Interact 191:42–47

    Article  PubMed  CAS  Google Scholar 

  40. Rudnick DA, McWherter CA, Rocque WJ et al (1991) Kinetic and structural evidence for a sequential ordered Bi Bi mechanism of catalysis by Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase. J Biol Chem 266:9732–9739

    PubMed  CAS  Google Scholar 

  41. Sekhar VC, Plapp BV (1990) Rate constants for amechanism including intermediates in the interconversion of ternary complexes by horse liver alcohol dehydrogenase. Biochemistry 29:4289–4295

    Article  PubMed  CAS  Google Scholar 

  42. Rudolph FB (1979) Product inhibition and abortive complex formation. Methods Enzymol 63:411–436

    Article  PubMed  CAS  Google Scholar 

  43. Stromberg P, Svensson S, Berst KB et al (2004) Enzymatic mechanism of low-activity mouse alcohol dehydrogenase 2. Biochemistry 43:1323–1328

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by the Competitive Research Programme from Singapore National Research Foundation under Project No.: NRF-CRP5-2009-05. We thank Dr. Ray for providing adhe1 information from genomic data sequence of Clostridium sp. BOH3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Lin Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopalan, G., He, J. & Yang, KL. A Highly Efficient NADH-dependent Butanol Dehydrogenase from High-butanol-producing Clostridium sp. BOH3. Bioenerg. Res. 6, 240–251 (2013). https://doi.org/10.1007/s12155-012-9253-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-012-9253-8

Keywords

Navigation