Skip to main content
Log in

Two-Dimensional NMR Evidence for Cleavage of Lignin and Xylan Substituents in Wheat Straw Through Hydrothermal Pretreatment and Enzymatic Hydrolysis

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Solution-state two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy of plant cell walls is a powerful tool for characterizing changes in cell wall chemistry during the hydrothermal pretreatment process of wheat straw for second-generation bioethanol production. One-bond 13C–1H NMR correlation spectroscopy, via an heteronuclear single quantum coherence experiment, revealed substantial lignin β-aryl ether cleavage, deacetylation via cleavage of the natural acetates at the 2-O- and 3-O-positions of xylan, and uronic acid depletion via cleavage of the (1 → 2)-linked 4-O-methyl-α-d-glucuronic acid of xylan. In the polysaccharide anomeric region, decreases in the minor β-d-mannopyranosyl, and α-l-arabinofuranosyl units were observed in the NMR spectra from hydrothermally pretreated wheat straw. The aromatic region indicated only minor changes to the aromatic structures during the process (e.g., further deacylation revealed by the depletion in ferulate and p-coumarate structures). Supplementary chemical analyses showed that the hydrothermal pretreatment increased the cellulose and lignin concentration with partial removal of extractives and hemicelluloses. The subsequent enzymatic hydrolysis incurred further deacetylation of the xylan, leaving approximately 10 % of acetate intact based on the weight of original wheat straw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2D NMR:

two-dimensional (solution state) nuclear magnetic resonance spectroscopy

HSQC:

heteronuclear single quantum coherence

β-d-Xylp :

β-d-xylopyranosyl units

2-O-Ac-β-d-Xylp, 3-O-Ac-β-d-Xylp :

O-acetylated β-d-xylopyranosyl units

4-O-MeGlcA:

4-O-methyl-α-d-glucuronic acid units

β-d-Manp :

β-d-mannopyranosyl units

α-l-Araf :

α-l-arabinofuranosyl units

SEM:

scanning electron microscope

References

  1. Larsen J, Petersen MØ, Thirup L, Li HW, Iversen FK (2008) The IBUS process – lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol 31(5):765–772

    Article  CAS  Google Scholar 

  2. Aspinall GO (1982) Isolation and fractionation of polysaccharides. In: Aspinall GO (ed) The Polysaccharides, vol 1. Academic, New York, pp 19–35

    Google Scholar 

  3. Lai YZ, Sarkanen KV (1971) Isolation and structural studies. In: Sarkanen KV, Ludwig CH (eds) Lignins. Occurrence, formation, structure and reactions. Wiley Interscience, New York, pp 165–240

    Google Scholar 

  4. Lu F, Ralph J (2003) Non-degradative dissolution and acetylation of ball-milled plant cell walls: high-resolution solution-state NMR. Plant J 35(4):535–544

    Article  PubMed  CAS  Google Scholar 

  5. Forziati FH, Stone WK, Rowen JW, Appel WD (1950) Cotton powder for infrared transmission measurements. J Res Nat Bur Stand 45(2):109–113

    Article  Google Scholar 

  6. Schwanninger M, Rodrigues JC, Periera H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  7. Fujimoto A, Matsumoto Y, Chang HM, Meshitsuka G (2005) Quantitative evaluation of milling effects on lignin structure during the isolation process of milled wood lignin. J Wood Sci 51:89–91

    Article  CAS  Google Scholar 

  8. Ikeda T, Holtman K, Kadla JF, Chang HM, Jameel H (2002) Studies on the effect of ball milling on lignin structure using a modified DFRC method. J Agric Food Chem 50(1):129–135

    Article  PubMed  CAS  Google Scholar 

  9. Yelle DJ, Ralph J, Frihart CR (2008) Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy. Magn Reson Chem 46:508–517

    Article  PubMed  CAS  Google Scholar 

  10. Kim H, Ralph J, Akiyama T (2008) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6. Bioenerg Res 1:56–66

    Article  Google Scholar 

  11. Lapierre C (2011) Personal Communication

  12. Lapierre C, Pollet B, Rolando C (1995) New insights into the molecular architecture of hardwood lignins by chemical degradative methods. Res Chem Intermed 21(3–5):397–412

    Article  CAS  Google Scholar 

  13. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Ann Rev Plant Biol 54:519–546

    Article  CAS  Google Scholar 

  14. Crestini C, Argyropoulos DS (1997) Structural analysis of wheat straw lignin by quantitative 31P and 2D NMR spectroscopy. The occurrence of ester bonds and α-O-4 substructures. J Agr Food Chem 45:1212–1219

    Article  CAS  Google Scholar 

  15. Ralph J, Hatfield RD, Quideau S, Helm RF, Grabber JH, Jung HJG (1994) Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J Am Chem Soc 116(21):9448–9456

    Article  CAS  Google Scholar 

  16. Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98:3061–3068

    Article  PubMed  CAS  Google Scholar 

  17. Kaparaju P, Felby C (2010) Characterization of lignin during oxidative and hydrothermal pretreatment processes of wheat straw and corn stover. Bioresour Technol 101:3175–3181

    Article  PubMed  CAS  Google Scholar 

  18. Buchala AJ, Wilkie KCB (1973) Total hemicelluloses from wheat at different stages of growth. Phytochemistry 12:499–505

    Article  CAS  Google Scholar 

  19. Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werkst 57:191–202

    Article  CAS  Google Scholar 

  20. Scalbert A, Monties B, Lallemand J-Y, Guittet E, Rolando C (1985) Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochemistry 24(6):1359–1362

    Article  CAS  Google Scholar 

  21. Sjöström E (1993) Wood Chemistry: fundamentals and applications, 2nd edn. Academic Press, Inc., San Diego

    Google Scholar 

  22. Fry SC, Miller JG (1989) Toward a working model of the growing plant cell wall: phenolic cross-linking reaction in the primary cell walls of dicotyledons. In: Lewis NG, Paice MG (eds) Plant cell wall polymers: biogenesis and biodegradation, vol ACS, Symposium Series 399. American Chemical Society, Washington, D.C., pp 33–46

    Chapter  Google Scholar 

  23. Ralph J (2010) Hydroxycinnamates in lignification. Phytochem Rev 9:65–83

    Article  CAS  Google Scholar 

  24. Ralph J, Grabber JH, Hatfield RD (1995) Lignin-ferulate cross-links in grasses – active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydr Res 275(1):167–178

    Article  CAS  Google Scholar 

  25. Ralph J, Quideau S, Grabber JH, Hatfield RD (1994) Identification and synthesis of new ferulic acid dehydrodimers present in grass cell-walls. J Chem Soc Perk T 1(23):3485–3498

    Google Scholar 

  26. Bunzel M, Heuermann B, Kim H, Ralph J (2008) Peroxidase-catalyzed oligomerization of ferulic acid esters. J Agr Food Chem 56:10368–10375

    Article  CAS  Google Scholar 

  27. Bunzel M, Ralph J, Funk C, Steinhart H (2003) Isolation and identification of a ferulic acid dehydrotrimer from saponified maize bran insoluble fiber. Eur Food Res Technol 217(2):128–133

    Article  CAS  Google Scholar 

  28. Quideau S, Ralph J (1997) Lignin-ferulate cross-links in grasses 4. Incorporation of 5-5-coupled dehydrodiferulate into synthetic lignin. J Chem Soc Perk T 1 1(16):2351–2358

    Article  Google Scholar 

  29. Hatfield RD, Ralph J, Grabber JH (1999) Cell wall cross-linking by ferulates and diferulates in grasses. J Sci Food Agr 79(3):403–407

    Article  CAS  Google Scholar 

  30. Mueller-Harvey I, Hartley RD, Harris PJ, Curzon EH (1986) Linkage of p-coumaryl and feruloyl groups to cell wall polysaccharides of barley straw. Carbohydr Res 148:71–85

    Article  CAS  Google Scholar 

  31. Bunzel M, Ralph J, Lu F, Hatfield RD, Steinhart H (2004) Lignins and ferulate-coniferyl alcohol cross-coupling products in cereal grains. J Agr Food Chem 52(21):6496–6502

    Article  CAS  Google Scholar 

  32. Grabber JH, Ralph J, Hatfield RD (2002) Model studies of ferulate-coniferyl alcohol cross-product formation in primary maize walls: implications for lignification in grasses. J Agr Food Chem 50(21):6008–6016

    Article  CAS  Google Scholar 

  33. Iiyama K, Lam TBT, Stone BA (1990) Phenolic acid bridges between polysaccharides and lignin in wheat internodes. Phytochemistry 29:733–737

    Article  CAS  Google Scholar 

  34. Jacquet B, Pollet B, Lapierre C, Mhamdi F, Rolando C (1995) New ether-linked ferulic acid-coniferyl alcohol dimers identified in grass straws. J Agr Food Chem 43:2746–2751

    Article  CAS  Google Scholar 

  35. Ralph J, Bunzel M, Marita JM, Hatfield R, Lu F, Kim H et al (2004) Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochem Rev 3:79–96

    Article  CAS  Google Scholar 

  36. Bunzel M, Ralph J, Kim H, Lu FC, Ralph SA, Marita JM et al (2003) Sinapate dehydrodimers and sinapate-ferulate heterodimers in cereal dietary fiber. J Agr Food Chem 51(5):1427–1434

    Article  CAS  Google Scholar 

  37. Lu F, Ralph J (1999) Detection and determination of p-coumaroylated units in lignins. J Agr Food Chem 47(5):1988–1992

    Article  CAS  Google Scholar 

  38. Ralph J, Landucci L (2010) NMR of lignins. In: Heitner C, Dimmel DR, Schmidt JA (eds) Lignin and Lignans: advances in chemistry. CRC Press (Taylor & Francis Group), Boca Raton, pp 137–234

    Chapter  Google Scholar 

  39. Sluiter A (2004) Determination of structural carbohydrates and lignin in biomass. http://www.nrel.gov/biomass/analytical_procedures.html. National Renewable Energy Laboratory (NREL) Analytical Procedures

  40. Kristensen JB, Thygesen LG, Felby C, Jørgensen H, Elder T (2008) Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels 1(5):1–9

    Google Scholar 

  41. Ralph SA, Ralph J, Landucci LL (2004) NMR database of lignin and cell wall model compounds, http://ars.usda.gov/Services/docs.htm?docid=10491

  42. Kim H, Ralph J (2010) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5. Org Biomol Chem 8(3):576–591

    Article  PubMed  CAS  Google Scholar 

  43. Sun XF, Sun R, Fowler P, Baird MS (2005) Extraction and characterization of original lignin and hemicelluloses from wheat straw. J Agr Food Chem 53:860–870

    Article  CAS  Google Scholar 

  44. Teleman A, Lundqvist J, Tjerneld F, Stalbrand H, Dahlman O (2000) Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohydr Res 329(4):807–815

    Article  PubMed  CAS  Google Scholar 

  45. Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23:1333–1339

    Article  PubMed  CAS  Google Scholar 

  46. Mosier NS, Hendrickson R, Brewer M, Ho N, Sedlak M, Dreshel R et al (2005) Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Appl Biochem Biotechnol 125:77–97

    Article  PubMed  CAS  Google Scholar 

  47. Donohoe BS, Tucker MP, Davis M, Decker SR, Himmel ME, Vinzant TB (2007) Tracking lignin coalescence and migration through plant cell walls during pretreatment, vol 5B-01. 29th Symposium on Biotechnology for Fuels and Chemicals. Denver, CO

  48. Hansen MA, Kristensen JB, Felby C, Jørgensen H (2011) Pretreatment and enzymatic hydrolysis of wheat straw (Triticum aestivum L.) – the impact of lignin relocation and plant tissues on enzymatic accessibility. Bioresour Technol 102:2804–2811

    Article  PubMed  CAS  Google Scholar 

  49. Kabel MA, Bos G, Zeevalking J, Voragen AGJ, Schols HA (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour Technol 98:2034–2042

    Article  PubMed  CAS  Google Scholar 

  50. Grethlein HE (1985) The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat Biotechnol 3(2):155–160

    Article  CAS  Google Scholar 

  51. Chundawat SPS, Donohoe BS, da Costa SL, Elder T, Agarwal UP, Lu F et al (2011) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci. doi:10.1039/c1030ee00574f

  52. Han G, Deng J, Zhang S, Bicho P, Wu Q (2010) Effect of steam explosion treatment on characteristics of wheat straw. Ind Crop Prod 31(1):28–33

    Article  Google Scholar 

  53. Ralph J, Marita JM, Ralph SA, Hatfield R, Lu F, Ede RM et al (1999) Solution-state NMR of lignins. In: Argyropoulos DS, Rials T (eds) Advances in lignocellulosics characterization. TAPPI Press, Atlanta, pp 55–108

    Google Scholar 

  54. Akiyama T, Kim H, Dixon RA, Ralph J (2007) Dibenzodioxocin structures involving p-hydroxyphenyl units in C3H down-regulated lignin. In: 10th International Congress on Biotechnology in the Pulp and Paper Industry. Madison, WI, p 71

  55. Ämmälahti E, Brunow G, Bardet M, Robert D, Kilpeläinen I (1998) Identification of side-chain structures in a poplar lignin using three-dimensional HMQC-HOHAHA NMR spectroscopy. J Agr Food Chem 46(12):5113–5117

    Article  Google Scholar 

  56. Karhunen P, Rummakko P, Sipilä J, Brunow G, Kilpeläinen I (1995) Dibenzodioxocins; a novel type of linkage in softwood lignins. Tetrahedron Lett 36:169–170

    Article  CAS  Google Scholar 

  57. Karhunen P, Rummakko P, Pujunen A, Brunow G (1996) Synthesis and crystal structure determination of model compounds for the dibenzodioxocine structure occurring in wood lignins. J Chem Soc Perk T 1(18):2303–2308

    Google Scholar 

  58. Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD (2009) The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Physiol 150:621–635

    Article  PubMed  CAS  Google Scholar 

  59. Wagner A, Donaldson L, Kim H, Phillips L, Flint H, Steward D et al (2009) Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiol 149(1):370–383

    Article  PubMed  CAS  Google Scholar 

  60. Yelle DJ, Ralph J, Frihart CR (2011) Delineating pMDI model reactions with loblolly pine via solution-state NMR spectroscopy. Part 2. Non-catalyzed reactions with the wood cell wall. Holzforschung 65:145–154

    CAS  Google Scholar 

  61. Zhang LM, Gellerstedt G (2007) Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references. Magn Reson Chem 45:37–45

    Article  PubMed  CAS  Google Scholar 

  62. Koskela H, Heikkilä O, Kilpeläinen I, Heikkinen S (2010) Quantitative two-dimensional HSQC experiment for high magnetic field NMR spectrometers. J Magn Reson 202:24–33

    Article  PubMed  CAS  Google Scholar 

  63. Kupče E, Freeman R (2007) Compensated adiabatic inversion pulses: broadband INEPT and HSQC. J Magn Reson 187:258–265

    Article  PubMed  Google Scholar 

  64. Lundquist K, Lundgren R (1972) Acid degradation of lignin. Part VII. The cleavage of ether bonds. Acta Chem Scand 26(5):2005–2023

    Article  CAS  Google Scholar 

  65. Reicher F, Corrêa JBC, Gorin PAJ (1984) Location of O-acetyl groups in the acidic d-xylan of Mimosa scabrella (bracatinga). A study of O-acetyl group migration. Carbohydr Res 135:129–140

    Article  CAS  Google Scholar 

  66. Çetinkol ÖP, Dibble DC, Cheng G, Kent MS, Knierim B, Auer M et al (2010) Understanding the impact of ionic liquid pretreatment on eucalyptus. Biofuels 1:33–46

    Article  Google Scholar 

  67. Ede RM, Brunow G, Poppius K, Sundquist J, Hortling B (1988) Formic acid/peroxyformic acid pulping. 1. Reactions of β-aryl ether model compounds with formic acid. Nord Pulp Pap Res J 3(3):119–123

    Article  CAS  Google Scholar 

  68. Nimz HH, Robert D (1985) 13C NMR spectra of acetic acid lignins. In: International Symposium on Wood and Pulping Chemistry. Vancouver, B.C., p 267

  69. Sarkanen KV (1980) Acid catalyzed delignification of lignocellulosics in organic solvents. In: Sarkanen KV, Tillman DA (eds) Progress in biomass conversion, vol 2. Academic, New York, pp 127–144

    Google Scholar 

  70. Shimada K, Hosoya S, Tomimura Y (1991) Delignification with organic acids. In: International Symposium on Wood and Pulping Chemistry. TAPPI Press, Melbourne, pp 183–188

    Google Scholar 

Download references

Acknowledgments

The Danish National Advanced Technology Foundation is greatly acknowledged for funding the project “Development of 2nd generation bioethanol process and technology” Project No. 18708. We also gratefully acknowledge the ARS Dairy Forage Research Center, Madison, Wisconsin for use of their NMR spectrometer in the early stages of this research. JR and HK were funded in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Yelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yelle, D.J., Kaparaju, P., Hunt, C.G. et al. Two-Dimensional NMR Evidence for Cleavage of Lignin and Xylan Substituents in Wheat Straw Through Hydrothermal Pretreatment and Enzymatic Hydrolysis. Bioenerg. Res. 6, 211–221 (2013). https://doi.org/10.1007/s12155-012-9247-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-012-9247-6

Keywords

Navigation