Skip to main content

Advertisement

Log in

The Effects of Local Biomass Availability and Possibilities for Truck and Train Transportation on the Greenhouse Gas Emissions of a Small-Diameter Energy Wood Supply Chain

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The work presents a method of assessing the greenhouse gas (GHG) emissions of forest-based biomass supply chains on a site-specific level. The method includes biomass availability and transportation network assessments based on geographical information system data, and GHG emission assessment based on life-cycle assessment methods. The GHG assessment takes into account distances traveled on the various types of road by trucks. Two case studies are presented, with 720 TJ year−1 of small-diameter energy wood chips delivered to two locations in Finland: Mikkeli and Rovaniemi. In the case studies, possibilities for train transportation from distant supply areas were included. Regarding railway transportation, it was assumed that the end-points have direct railway connections. The case study results show that if direct truck transportation around the plants were supplemented with one trainload per week (230 TJ year−1) from suitably located railway loading points, GHG emission savings of 8 % could be achieved in both cases. The most GHG-efficient supply chains around the railway loading points were found to be based on transportation of loose trees to the loading spots. Because of better biomass availability and better roads, the emissions of the least GHG-emitting supply chain were 9 % lower in Mikkeli’s case than for Rovaniemi. The results indicate that site-specific biomass availability and transportation possibilities should be taken into account in assessment of the GHG emissions of a particular biomass supply chain. Also, if suitable conditions exist, railway transportation offers potential for reduced supply-chain GHG emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Conversion factor: 1 m 3solid  = 7.63 GJ [28]

  2. In [4], “solid and gaseous biomasses” refers to raw materials originating from agricultural crops and residues from forestry, wood-processing industries, and organic waste.

  3. In [5], “biofuels” refers to liquid or gaseous fuel for transport produced from biomass, and “bioliquids” means liquid biomass-derived fuel for energy purposes other than for transport, including electricity and heating and cooling.

  4. Examples of these potential estimations are presented in [21] and [56], and the calculation procedures and methodology are presented in [56].

References

  1. Commission of the European Communities (2007) Communication from the Commission to the Council and the European Parliament, Renewable Energy Road Map—Renewable Energies in the 21st century: building a more sustainable future. COM (2006) 848 final Brussels, 10 January 2007

  2. Roubanis N, Dahlström C, Noizette P (2010) Statistics in focus, 56/2010. Eurostat, European Union

  3. Steierer F (2010) Energy use, pp 43–55, in: Mantau U et al. (ed) EUwood—real potential for changes in growth and use of EU forests. Final report. Hamburg, 160p

  4. European Commission (2010) Report from the Commission to the Council and the European Parliament on Sustainability Requirements for the use of solid and gaseous biomass sources in electricity, heating and cooling

  5. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30/EC

  6. Näslund Eriksson L, Gustavsson L (2008) Biofuels from stumps and small roundwood—costs and CO2 benefits. Biomass Bioenergy 32(10):897–902

    Article  Google Scholar 

  7. Routa J, Kellomäki S, Strandman H (2012) Effects of forest management on total biomass production and CO2 emissions from use of energy biomass of Norway spruce and Scots pine. Bioenergy Res, published online 21 February 2012

  8. Forsberg G (2000) Biomass energy transport analysis of bioenergy transport chains using life cycle inventory method. Biomass Bioenergy 19:17–30

    Article  CAS  Google Scholar 

  9. Soimakallio S, Mäkinen T, Ekholm T, Pahkala K, Mikkola H, Paappanen T (2009) Greenhouse gas balances of transportation biofuels, electricity and heat generation in Finland—dealing with the uncertainties. Energy Pol 37(1):80–90

    Article  Google Scholar 

  10. Kariniemi A, Kärhä K, Heikka T, Niininen M (2009) Feedstock supply chain CO2-eq Emissions—a case study on forest biomass for 2nd generation liquid traffic fuel. Metsätehon Katsaus 38/2009, Metsäteho Oy, Finland

  11. Leboreiro J, Hilaly AK (2011) Biomass transportation model and optimum plants size for the production of ethanol. Bioresour Technol 102:2712–2723

    Article  PubMed  CAS  Google Scholar 

  12. Börjesson P, Gustavsson L (1996) Regional production and utilization of biomass in Sweden. Energy 21(9):747–764

    Article  Google Scholar 

  13. Börjesson P (1996) Emissions of CO2 from biomass production and transportation in agriculture and forestry. Energy Convers Mgmt 37(Nos 6-8):1235–1240

    Article  Google Scholar 

  14. Schlamadinger B, Apps M, Bohlin F, Gustavsson L, Jungmeier G, Marland G, et al. (1997) Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems. Biomass Bioenergy 13(6):359–375

    Article  CAS  Google Scholar 

  15. Baittz, M, Binder M, Degen W, Deimling S, Krinke S, Rudloff M (2004) Comparative life cycle assessment for SunDiesel (Choren Process) and conventional diesel fuel. PE-Europe GmbH, by order of Volkswagen Ag and DaimlerChrysler AG

  16. Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009) Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recycl 53(2009):434–447

    Article  Google Scholar 

  17. Forestry Centre of Finland (2009) Metsä sijoituksena. http://www.metsakeskus.fi/web/fin/metsaneuvot/metsakiinteistokauppa/metsa_sijoituksena/etusivu.htm. Accessed 21 December 2011

  18. Kärhä K (2006) Small-sized whole-tree harvesting in Finland. In: World Bioenergy 2006, Jönköping, Sweden, 30 May–1 June 2006

  19. Alm M (2011) Bioenergia-alan toimialaraportti. 24 November 2011, Finnish Ministry of Employment and the Economy

  20. Laitila J, Asikainen A, Anttila P (2008) Energiapuuvarat. In: Kuusinen M, Ilvesniemi H (eds) Energiapuun korjuun ympäristövaikutukset. Forestry Development Centre Tapio and Finnish Forest Research Institute, Tutkimusraportti, pp 6–12

    Google Scholar 

  21. Hynynen J (2008) Bioenergiaa metsästä-metsiemme bioenergiavarat ja energiapuun talteenoton vaikutukset, Finnish Forest Research Institute. Presentation in Energiapuussa tulevaisuus—conference, 23 September 2008

  22. Jäppinen E, Korpinen OJ, Ranta T (2011) Effects of local biomass availability and road network properties on the greenhouse gas emissions of biomass supply chain. ISRN Renewable Energy, Volume 2011

  23. Finnish Forest Research Institute (2011) Glossary. http://www.forest.fi/smyforest/foresteng.nsf/allbyid/4C9E037BF9291D76C22572BF00471CD0?Opendocument#Untitled%20Section_0. Accessed 18 November 2011

  24. National Land Survey of Finland (2006) SLICES-database. Description available at: http://www.paikkatietohakemisto.fi/geonetwork/srv/fi/main.home?id=269. Accessed 15 November 2011

  25. Maidell M, Pyykkönen P, Toivonen R (2008) Regional potentials for forest-based energy in Finland. Pellervo Economic Research Institute Working Papers No. 106. P. 42

  26. Kärhä K, Elo J, Lahtinen P, Räsänen T, Keskinen S, Saijonmaa P, et al. (2010) Kiinteiden puupolttoaineiden saatavuus ja käyttö Suomessa vuonna 2020. Publications of the Ministry of the Employment and the Economy of Finland, Energy and the Climate 66/2010

  27. Karhunen A, Laihanen M, Ranta T (2011) The use and availability of forest fuel in regional level. Proceedings of 19th European Biomass Conference and Exhibition, Berlin

  28. Karttunen K, Föhr J, Ranta T (2010) Energy wood from South-Savo. Lappeenranta University of Technology, Faculty of Technology, Finland. LUT Energy, research report 7

  29. Hakkila, P (2003) Developing technology for large-scale production of forest chips. Technology Programme Report 5/2003. Finnish National Technology Agency. 54 pp

  30. Finnish Transport Agency (2010) Digiroad. Description available at: http://www.digiroad.fi/dokumentit/en_GB/documents/ Accessed 21 December 2011

  31. GaBi Databases (2012), PE International.

  32. Kärhä K (2007) Production machinery for forest chips in Finland in 2007 and in the future. Metsätehon Katsaus 28/2007. Metsäteho Oy, Finland

    Google Scholar 

  33. Guinée J et al. (2001) LCA—an operational guide to the ISO-standards.—Part 1: LCA in perspective, Final report

  34. Decree on the use of vehicles on the road (1257/1992), Ministry of Transport and Communications of Finland

  35. Directive 96/53/EEC of the European Council of 25 July 1996 laying down for certain road vehicles circulating within the Community the maximum authorized dimensions in national and international traffic and the maximum authorized weights in international traffic

  36. VR Group (2011) Carbon dioxide emissions halved in rail services. http://www.vr-konserni.fi/en/index/vastuullista_toimintaa/uusienvironment/carbondioxideemissions.html. Accessed 13 December 2011

  37. Kara M (2005) The impact of EU CO2 emission trading on Nordic electricity market, a proposal for Finnish strategy. VTT Technical Research Centre of Finland, Research Notes 2280

  38. Oy RE (2009) Ympäristövaikutusten arviointiohjelma. Mustikkamaan voimalaitos, Finland

    Google Scholar 

  39. Korpinen OJ, Saranen J, Jäppinen E, Ranta T (2010) Evaluating the suitability of long-distance railway transportation of forest fuels in Finnish circumstances. Presentation in 18th European Biomass Conference and Exhibition, 3–7 May 2010, Lyon

  40. Iikkanen P, Mukula M, Kosonen T, Kiuru T (2009) Developing of raw wood’s terminal and loading area network. Finnish Rail Administration, Publications of the Finnish Rail Administration, Helsinki

    Google Scholar 

  41. Iikkanen P, Sirkiä A (2011) Development of the railway raw wood terminal and loading point network. Study covering all forms of transport. Research reports of the Finnish Transport Agency 31/2011. Helsinki, Finland

  42. Tahvanainen T, Anttila P (2011) Supply chain cost analysis of long-distance transportation of energy wood in Finland. Biomass Bioenergy 35(8):3360–3375

    Article  Google Scholar 

  43. Agency FT (2010) Liikenneviraston toiminta-ja taloussuunnitelma 2011–2014. Helsinki, Finland

    Google Scholar 

  44. Lindholm EL, Berg S (2005) Energy requirement and environmental impact in timber transportation. Scand J Forest Res 20:184–191

    Article  Google Scholar 

  45. Vapo Oy and Metsäliitto osuuskunta (2011) Forest BtL:n biodieselhanke, Ympäristövaikutusten arviointiohjelma, 25 July 2011

  46. UPM-Kymmene Oyj (2009) Toisen sukupolven biojalostamo, ympäristövaikutusten arviointiselostus, August 2009

  47. NSE Biofuels Oy Ltd (2011) Biopolttoaineen tuotantolaitos Ympäristövaikutusten arviointiselostus, 3 May 2011

  48. Gronalt M, Rauch P (2007) Designing a regional forest fuel supply network. Biomass Bioenergy 31:393–402

    Article  Google Scholar 

  49. Strandvall H (2006) The advantages and disadvantages of weight limitations which are used to prevent frost damage. Master’s thesis, Helsinki University of Technology

  50. LHM Hakkuri Oy (2012) Technical specifications of LHM Giant chipper. http://www.lhmhakkuri.com/. Accessed 18 April 2012

  51. Rinne S (2010) The costs of wood fuel chipping and crushing. Master’s thesis, Lappeenranta University of Technology

  52. Laitila J, Väätäinen K (2011) Kokopuun ja rangan autokuljetus ja haketustuottavuus. Metsätieteen aikakauskirja 2:107–126, Finnish Forest research Institute and The Finnish Society of Forest Science

    Google Scholar 

  53. Karttunen K, Föhr J, Ranta T, Palojärvi K, Korpilahti A (2012) Puupolttoaineiden ja polttoturpeen kuljetuskalusto 2010, Metsätehon tuloskalvosarja 2/2012

  54. Backman H, Nordström R (2002) Improved performance of European long haulage transport. Report nr. 6E, TFK Transport Research Institute

  55. VTT Technical Research Centre of Finland (2011) LIPASTO—emission calculation system. http://lipasto.vtt.fi/indexe.htm. Accessed 13 April 2012

  56. Anttila P, Korhonen KT, Asikainen A (2009) Forest energy potential of small trees from young stands in Finland. In: Savolainen M (ed) Bioenergy. Finbio, Jyväskylä, pp 221–226

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Jäppinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jäppinen, E., Korpinen, O.J. & Ranta, T. The Effects of Local Biomass Availability and Possibilities for Truck and Train Transportation on the Greenhouse Gas Emissions of a Small-Diameter Energy Wood Supply Chain. Bioenerg. Res. 6, 166–177 (2013). https://doi.org/10.1007/s12155-012-9244-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-012-9244-9

Keywords

Navigation