Skip to main content
Log in

Next-Generation Sequencing of Crown and Rhizome Transcriptome from an Upland, Tetraploid Switchgrass

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The crown and rhizome transcriptome of an upland tetraploid switchgrass cultivar cv Summer well adapted to the upper Midwest was investigated using the Roche 454-FLX pyrosequencing platform. Overall, approximately one million reads consisting of 216 million bases were assembled into 27,687 contigs and 43,094 singletons. Analyses of these sequences revealed minor contamination with non-plant sequences (< 0.5%), indicating that a majority were for transcripts coded by the switchgrass genome. Blast2Gos comparisons resulted in the annotation of ~65% of the contig sequences and ~40% of the singleton sequences. Contig sequences were mostly homologous to other plant sequences, dominated by matches to Sorghum bicolor genome. Singleton sequences, while displaying significant matches to S. bicolor, also contained sequences matching non-plant species. Comparisons of the 454 dataset to existing EST collections resulted in the identification of 30,177 new sequences. These new sequences coded for a number of different proteins and a selective analysis of two categories, namely, peroxidases and transcription factors, resulted in the identification of specific peroxidases and a number of low-abundance transcription factors expected to be involved in chromatin remodeling. KEGG maps for glycolysis and sugar metabolism showed high levels of transcript coding for enzymes involved in primary metabolism. The assembly provided significant insights into the status of these tissues and broadly indicated that there was active metabolism taking place in the crown and rhizomes at post-anthesis, the seed maturation stage of plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28(6):515–535

    Article  Google Scholar 

  2. Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci U S A 105(2):464–469

    Article  PubMed  CAS  Google Scholar 

  3. Perlack RD, Wright LL, Turhollow A, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory, Oak Ridge

    Book  Google Scholar 

  4. Pedersen JF, Funnell DL, Vogel KP (2005) Impact of reduced lignin on plant fitness. Crop Sci 45:812–819

    Article  CAS  Google Scholar 

  5. Casler MD, Buxton DR, Vogel KP (2002) Genetic modification of lignin concentration affects fitness of perennial herbaceous plants. Theor Appl Genet 104(1: 1):127–131

    Article  PubMed  CAS  Google Scholar 

  6. Vogel KP, Hopkins AA, Moore KJ, Johnson KD, Carlson IT (2002) Winter survival in switchgrass populations bred for high IVDMD. Crop Sci 42(6):1857–1862

    Article  Google Scholar 

  7. Okada M, Lanzatella C, Saha MC, Bouton J, Wu R, Tobias CM (2010) Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions. Genetics 185(3):745–760. doi:10.1534/genetics.110.113910

    Article  PubMed  CAS  Google Scholar 

  8. Gedye K, Gonzalez-Hernandez J, Ban Y, Ge X, Thimmapuram J, Sun F et al (2010) Investigation of the transcriptome of prairie cord grass, a new cellulosic biomass crop. Plant Gen 3(2):69–80. doi:10.3835/plantgenome2010.06.0012

    Article  CAS  Google Scholar 

  9. Huang SW, Guo SG, Zheng Y, Joung JG, Liu SQ, Zhang ZH et al (2010) Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics 11. doi:10.1186/1471-2164-11-384

  10. Luo HM, Li Y, Sun C, Wu QO, Song JY, Sun YZ et al (2010) Comparison of 454-ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in lycopodium alkaloid biosynthesis and developmental regulation. BMC Plant Biol 10. doi:10.1186/1471-2229-10-209

  11. Srivastava AC, Palanichelvam K, Ma J, Steele J, Blancaflor EB, Tang Y (2010) Collection and analysis of expressed sequence tags derived from laser capture microdissected switchgrass (Panicum virgatum L. Alamo) vascular tissues. Bioenergy Res 3(3):278–294

    Article  Google Scholar 

  12. Tranel PJ, Riggins CW, Peng YH, Stewart CN (2010) Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes. Pest Manag Sci 66(10):1042–1052. doi:10.1002/ps.2006

    Article  PubMed  Google Scholar 

  13. Der JP, Barker MS, Wickett NJ, dePamphilis CW, Wolf PG (2011) De novo characterization of the gametophyte transcriptome in bracken fern. Pteridium aquilinum. BMC Genomics 12. doi:10.1186/1471-2164-12-99

  14. Swarbreck SM, Lindquist EA, Ackerly DD, Andersen GL (2011) Analysis of leaf and root transcriptomes of soil-grown Avena barbata plants. Plant Cell Physiol 52(2):317–332. doi:10.1093/pcp/pcq188

    Article  PubMed  CAS  Google Scholar 

  15. Tobias CM, Twigg P, Hayden DM, Vogel KP, Mitchell RM, Lazo GR et al (2005) Analysis of expressed sequence tags and the identification of associated short tandem repeats in switchgrass. Theor Appl Genet 111(5):956–964. doi:10.1007/s00122-005-0030-3

    Article  PubMed  Google Scholar 

  16. Tobias CM, Sarath G, Twigg P, Lindquist E, Pangilinan J, Penning BW et al (2008) Comparative genomics in switchgrass using 61 585 high-quality expressed sequence tags. Plant Genome 1(2):111–124

    Article  CAS  Google Scholar 

  17. Vogel KP (2004) Switchgrass. In: Moser LE, Sollenberger L, Burson B (eds) Warm-season (C4) grasses. ASA-CSSA-SSSA Monograph No. 45. ASA-CSSA-SSSA, Madison, pp 561–588

    Google Scholar 

  18. Martinez-Reyna JM, Vogel KP (2008) Heterosis in switchgrass: spaced plants. Crop Sci 48(4):1312–1320. doi:10.2135/cropsci2007.12.0695

    Article  Google Scholar 

  19. Vogel KP, Mitchell KB (2008) Heterosis in switchgrass: biomass yield in swards. Crop Sci 48(6):2159–2164. doi:10.2135/cropsci2008.02.0117

    Article  Google Scholar 

  20. Casler MD, Vogel KP, Taliaferro CM, Ehlke NJ, Berdahl JD, Brummer EC et al (2007) Latitudinal and longitudinal adaptation of switchgrass populations. Crop Sci 47(6):2249–2260. doi:10.2135/cropsci2006.12.0780

    Article  Google Scholar 

  21. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. doi:10.1006/jmbi.1990.9999

    PubMed  CAS  Google Scholar 

  22. Paterson AH, Bowers JE et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551–556. doi:10.1038/Nature07723

    Article  PubMed  CAS  Google Scholar 

  23. Vogel JP, Garvin DF et al (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463(7282):763–768. doi:10.1038/Nature08747

    Article  CAS  Google Scholar 

  24. Passardi F, Longet D, Penel C, Dunand C (2004) The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry 65(13):1879–1893

    Article  PubMed  CAS  Google Scholar 

  25. Vogel KP, Sarath G, Saathoff AJ, Mitchell RB (2010) Switchgrass. Energy crops. Royal Society of Chemistry, London. doi:10.1039/9781849732048-00275

    Google Scholar 

  26. Moore KJ, Moser LE, Vogel KP, Waller SS, Johnson BE, Pedersen JF (1991) Describing and quantifying growth stages of perennial forage grasses. Agron J 83(6):1073–1077

    Article  Google Scholar 

  27. Jain M, Garg R, Patel RK, Tyagi AK (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18(1):53–63. doi:10.1093/dnares/dsq028

    Article  PubMed  Google Scholar 

  28. Logacheva MD, Kasianov AS, Vinogradov DV, Samigullin TH, Gelfand MS, Makeev VJ et al (2011) De novo sequencing and characterization of floral transcriptome in two species of buckwheat (Fagopyrum). BMC Genomics 12:30. doi:10.1186/1471-2164-12-30

    Article  PubMed  CAS  Google Scholar 

  29. Delannoy E, Jalloul A, Assigbetse K, Marmey P, Geiger JP, Lherminier J et al (2003) Activity of class III peroxidases in the defense of cotton to bacterial blight. Mol Plant Microbe Interact 16(11):1030–1038. doi:10.1094/MPMI.2003.16.11.1030

    Article  PubMed  CAS  Google Scholar 

  30. Jeong JH, Song HR, Ko JH, Jeong YM, Kwon YE, Seol JH et al (2009) Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3 lysine 4 demethylases in Arabidopsis. PLoS One 4(11):e8033. doi:10.1371/journal.pone.0008033

    Article  PubMed  Google Scholar 

  31. Lu F, Cui X, Zhang S, Jenuwein T, Cao X (2011) Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat Genet 43(7):715–719. doi:10.1038/ng.854

    Article  PubMed  CAS  Google Scholar 

  32. Sarnowski TJ, Rios G, Jasik J, Swiezewski S, Kaczanowski S, Li Y et al (2005) SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during Arabidopsis development. Plant Cell 17(9):2454–2472. doi:10.1105/tpc.105.031203

    Article  PubMed  CAS  Google Scholar 

  33. Castillejo C, Pelaz S (2008) The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr Biol 18:1338–1343

    Article  PubMed  CAS  Google Scholar 

  34. Kosugi S, Ohashi Y (2002) E2Ls, E2F-like repressors of Arabidopsis that bind to E2F sites in a monomeric form. J Biol Chem 277:16553–16558

    Article  PubMed  CAS  Google Scholar 

  35. de Jong M, Wolters-Arts M, Garcia-Martinez JL, Mariani C, Vriezen WH (2011) The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. J Exp Bot 62:617–626

    Article  PubMed  Google Scholar 

  36. Menand B, Yi K, Jouannic S, Hoffmann L, Ryan E et al (2007) An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316:1477–1480

    Article  PubMed  CAS  Google Scholar 

  37. Gremski K, Ditta G, Yanofsky MF (2007) The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development 134:3593–3601

    Article  PubMed  CAS  Google Scholar 

  38. Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN et al (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:61–76

    Article  PubMed  CAS  Google Scholar 

  39. Walsh J, Waters CA, Freeling M (1998) The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade–sheath boundary. Genes Dev 12:208–218

    Article  PubMed  CAS  Google Scholar 

  40. Finkelstein R, Gampala SS, Lynch TJ, Thomas TL, Rock CD (2005) Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE (ABI) 5 and ABRE-BINDING FACTOR (ABF) 3. Plant Mol Biol 59:253–267

    Article  PubMed  CAS  Google Scholar 

  41. Ehlert A, Weltmeier F, Wang X, Mayer CS, Smeekens S et al (2006) Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. Plant J 46:890–900

    Article  PubMed  CAS  Google Scholar 

  42. Vagujfalvi A, Aprile A, Miller A, Dubcovsky J, Delugu G et al (2005) The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Mol Gen Genomics 274:506–514

    Article  CAS  Google Scholar 

  43. Mu J, Tan H, Zheng Q, Fu F, Liang Y et al (2008) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148:1042–1054

    Article  PubMed  CAS  Google Scholar 

  44. Sarnowski TJ, Rios G, Jasik J, Swiezewski S, Kaczanowski S et al (2005) SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during Arabidopsis development. Plant Cell 17:2454–2472

    Article  PubMed  CAS  Google Scholar 

  45. Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K (2002) A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci U S A 99:7530–7535

    Article  PubMed  CAS  Google Scholar 

  46. Kumar R, Kushalappa K, Godt D, Pidkowich MS, Pastorelli S et al (2007) The Arabidopsis BEL1-LIKE HOMEODOMAIN proteins SAW1 and SAW2 act redundantly to regulate KNOX expression spatially in leaf margins. Plant Cell 19:2719–2735

    Article  PubMed  CAS  Google Scholar 

  47. Jeong JH, Song HR, Ko JH, Jeong YM, Kwon YE et al (2009) Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3 lysine 4 demethylases in Arabidopsis. PLoS One 4:e8033

    Article  PubMed  Google Scholar 

  48. Lu F, Cui X, Zhang S, Jenuwein T, Cao X (2011) Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat Genet 43:715–719

    Article  PubMed  CAS  Google Scholar 

  49. Rotman N, Durbarry A, Wardle A, Yang WC, Chaboud A et al (2005) A novel class of MYB factors controls sperm-cell formation in plants. Curr Biol 15:244–248

    Article  PubMed  CAS  Google Scholar 

  50. Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606

    Article  PubMed  CAS  Google Scholar 

  51. Yoshiyama K, Conklin PA, Huefner ND, Britt AB (2009) Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage. Proc Natl Acad Sci U S A 106:12843–12848

    Article  PubMed  CAS  Google Scholar 

  52. Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y et al (2009) The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant J 57:426–435

    Article  PubMed  CAS  Google Scholar 

  53. Asano T, Masuda D, Yasuda M, Nakashita H, Kudo T et al (2008) AtNFXL1, an Arabidopsis homologue of the human transcription factor NF-X1, functions as a negative regulator of the trichothecene phytotoxin-induced defense response. Plant J 53:450–464

    Article  PubMed  CAS  Google Scholar 

  54. Doyle MR, Bizzell CM, Keller MR, Michaels SD, Song J et al (2005) HUA2 is required for the expression of floral repressors in Arabidopsis thaliana. Plant J 41:376–385

    Article  PubMed  CAS  Google Scholar 

  55. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Steve Masterson and Patrick Callahan for excellent technical support. This work was supported by the Office of Science (BER), US Department of Energy Grant Number DE-AI02-09ER64829, and USDA-ARS CRIS project 5440-21000-028-00D. The US Department of Agriculture, Agricultural Research Service, is an equal opportunity/affirmative action employer and all agency services are available without discrimination. Mention of commercial products and organizations in this manuscript is solely to provide specific information. It does not constitute endorsement by USDA-ARS over other products and organizations not mentioned.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Sarath.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

The 50 most abundant contigs in switchgrass crown and rhizome transcriptome assembly (DOCX 14 kb)

Table S2

Comparison of assembly outcomes for selected plant transcriptomes performed by 454 pyrosequencing1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, N.A., Saathoff, A.J., Kim, J. et al. Next-Generation Sequencing of Crown and Rhizome Transcriptome from an Upland, Tetraploid Switchgrass. Bioenerg. Res. 5, 649–661 (2012). https://doi.org/10.1007/s12155-011-9171-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-011-9171-1

Keywords

Navigation