Skip to main content
Log in

Current Large-Scale US Biofuel Potential from Microalgae Cultivated in Photobioreactors

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Current assessments of the commercial viability and productivity potential of microalgae biofuels have been forced to extrapolate small-scale research data. The resulting analyses are not representative of microalgae cultivation and processing at industrial scale. To more accurately assess the current near-term realizable, large-scale microalgae productivity potential in the USA, this paper presents a model of microalgae growth derived from industrial-scale outdoor photobioreactor growth data. This model is combined with thermal models of the photobioreactor system and 15 years of hourly historical weather data from 864 locations in the USA to more accurately assess the current productivity potential of microalgae. The resulting lipid productivity potential of Nannochloropsis is presented in the form of a map that incorporates various land availability models to illustrate the near-term feasible cultivation locations and corresponding productivity potentials for the USA. The discussion focuses on a comparison of model results with productivity potentials currently reported in literature, an assessment demonstrating the scale of Department of Energy 2030 alternative fuel goals, and a critical comparison of productivity potential in several key regions of the USA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PAR:

Photosynthetic active radiation

PFD:

Photon flux density

GIS:

Geographic information system

PBR:

Photobioreactor

ORP:

Open raceway pond

DOE:

Department of Energy

NLCD:

National Land Cover Database

c p :

Specific heat of water (kJ kg−1 K−1)

E a :

Activation energy carboxylation Rubisco (J mol−1)

G bottom :

Solar energy reaching the bottom (W m−2)

G n :

Solar energy reaching node n (W m−2)

G sur :

Solar energy reaching the surface (W m−2)

h i :

Convection coefficient (W m−2 K−1)

h r :

Net radiation coefficient with the sky (W m−2 K−1)

k :

Thermal conductivity of water (W m−1 K−1)

L n :

Distance between nodes (m)

m n :

Total mass represented by node n (kg)

Q i :

Energy stored/released by ground (W m−2)

R :

Universal gas constant (J K−1 mol−1)

T 1 :

Temperature at node 1 (K)

T ambient :

Temperature of the ambient (K)

T n :

Temperature at node n (K)

T n − 1 :

Temperature at node n minus 1 (K)

T n + 1 :

Temperature at node n plus 1 (K)

Topt :

Optimum microaglae growth temperature (K)

T sky :

Temperature of the sky (K)

T sur :

Temperature at the surface (K)

T :

Temperature of microalgae culture (K)

t :

Time (s)

φ T :

Temperature efficiency factor

References

  1. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1(1):20–43

    Article  Google Scholar 

  2. Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329(5993):796–799

    Article  PubMed  CAS  Google Scholar 

  3. Batan L, Quinn J, Willson B, Bradley T (2010) Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ Sci Technol 44:7975–7980

    Article  PubMed  CAS  Google Scholar 

  4. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    Article  CAS  Google Scholar 

  5. Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820

    PubMed  CAS  Google Scholar 

  6. Lardon L, Helias A, Sialve B, Stayer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481

    Article  PubMed  CAS  Google Scholar 

  7. Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102(1):50–56

    Article  PubMed  CAS  Google Scholar 

  8. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  PubMed  CAS  Google Scholar 

  9. Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88(10):3524–3531

    Article  Google Scholar 

  10. Maxwell EL, Folger AG, Hogg SE (1985) Resource evaluation and site selection for microalgae production systems. Solar Energy Research Institute: SERI/TR-215-2484

  11. Magnuson J (2010) Algal biofuels. Paper presented at the Washington State Bioenergy Research Symposium, Seattle, WA, 8 November 2010

  12. Wigmosta MS, Coleman AM, Skaggs RJ, Huesemann MH, Lane LJ (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47:W00H04

    Article  Google Scholar 

  13. James SC, Boriah V (2010) Modeling algae growth in an open-channel raceway. J Comput Biol 17(7):895–906

    Article  PubMed  CAS  Google Scholar 

  14. Quinn J, de Winter L, Bradley T (2011) Microalgae bulk growth model with application to industrial scale systems. Bioresour Technol 102(8):5083–5092

    Article  PubMed  CAS  Google Scholar 

  15. Benemann JR, Goebel RP, Weissman JC, Augenstein DC (1982) Microalgae as a source of liquid fuels. Final technical report, US Department of Energy, Office of Research: DOE/ER/30014-TR

  16. Lansford R, Hernandez J, Enis P, Truby D, Mapel C (1990) Evaluation of available saline water resources in New Mexico for the production of microalgae. Solar Energy Research Institute: SERI/TR-232-3597

  17. Muhs J, Viamajala S, Heydorn B, Edwards M, Hu Q, Hobbs R et al (2009) A summary of opportunities, challenges, and research needs: algae biofuels & carbon recycling. www.utah.gov/ustar/documents/63.pdf. Cited 28 Jan 2011

  18. Molineaux B, Lachal B, Guisan O (1994) Thermal analysis of five outdoor swimming pools heated by unglazed solar collectors. Sol Energy 53(1):21–26

    Article  Google Scholar 

  19. Szeicz G, Mcmonagle RC (1983) The heat balance of urban swimming pools. Sol Energy 30(3):247–259

    Article  Google Scholar 

  20. Weyer-Geigel KM (2008) Heat-balance model and thermal analysis of an algae growth system for biofuel. Thesis, Colorado State University

  21. Sartori E (2000) A critical review on equations employed for the calculation of the evaporation rate from free water surfaces. Sol Energy 68(1):77–89

    Article  Google Scholar 

  22. Duffie JA, Beckman WA (2006) Solar engineering of thermal processes. Wiley, Hoboken

    Google Scholar 

  23. Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29(6):729–739

    Article  Google Scholar 

  24. Macintyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38(1):17–38

    Article  Google Scholar 

  25. Richmond A (2000) Microalgal biotechnology at the turn of the millennium: a personal view. J Appl Phycol 12:441–451

    Article  Google Scholar 

  26. Goldman JC (1979) Outdoor algal mass-cultures. 2. Photosynthetic yield limitations. Water Res 13(2):119–136

    Article  CAS  Google Scholar 

  27. Furuya K, Hasegawa O, Yoshikawa T, Taguchi S (1998) Photosynthesis–irradiance relationship of phytoplankton and primary production in the vicinity of Kuroshio warm core ring in spring. J Oceanogr 54:545–552

    Article  CAS  Google Scholar 

  28. Harding LW, Prezelin BB, Sweeney BM, Cox JL (1982) Diel oscillations of the photosynthesis–irradiance (P–I) relationship in natural assemblages of phytoplankton. Mar Biol 67(2):167–178

    Article  Google Scholar 

  29. Ihnken S, Eggert A, Beardall J (2010) Exposure times in rapid light curves affect photosynthetic parameters in algae. Aquat Bot 93(3):185–194

    Article  Google Scholar 

  30. Alexandrov GA, Yamagata Y (2007) A peaked function for modeling temperature dependence of plant productivity. Ecol Model 200(1–2):189–192

    Article  Google Scholar 

  31. Geider RJ, Macintyre HL, Kana TM (1997) Dynamic model of phytoplankton growth and acclimation: Responses of the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrient-limitation and temperature. Marine Ecol Prog Ser 148(1–3):187–200

    Article  Google Scholar 

  32. Wilcox S (2007) 1991–2005 national solar radiation database. http://www.osti.gov/energycitations/servlets/purl/908182-AmuLTA/. Cited 1 Oct 2010

  33. Arcgis (2010) World topographic map. http://www.arcgis.com/home/item.html?id=f2498e3d0ff642bfb4b155828351ef0e. Cited 1 Nov 2010

  34. U.S. Geological Survey (2001) National land cover database (NLCD 2001). http://www.mrlc.gov/nlcd_multizone_map.php. Cited 15 Nov 2010

  35. Office of E-Government & Information (2010) U.S. Map and data. www.geodata.gov. Cited November 2010

  36. U.S. Department of Energy (2010) National algal biofuels technology roadmap. Office of Energy Efficiency and Renewable Energy, Biomass Program, U.S. Department of Energy, Washington, DC

    Google Scholar 

  37. Consultative Group on International Agricultural Research (2010) CGIAR CSI. www.cgiar-csi.org. Cited November 2010

  38. Department of Energy (2007) Alternative fuel transportation program; replacement fuel goal modification. Office of Energy Efficiency and Renewable Energy. http://www1.eere.energy.gov/vehiclesandfuels/epact/pdfs/rfg_final_rule_fr_notice.pdf Cited 25 Jan 2011

  39. Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Biorefining-Biofpr 3(4):431–440

    Article  CAS  Google Scholar 

  40. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ et al (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21(3):277–286

    Article  PubMed  CAS  Google Scholar 

  41. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44(5):1813–1819

    Article  PubMed  CAS  Google Scholar 

  42. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US department of energy’s aquatic species program: biodiesel from algae. NREL report: TP-580-24190

  43. Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strateg Glob Chang 12:573–608

    Article  Google Scholar 

  44. Chisti Y (2008) Response to Reijnders: do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26(7):351–352

    Article  CAS  Google Scholar 

  45. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131

    Article  PubMed  CAS  Google Scholar 

  46. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G et al (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  PubMed  CAS  Google Scholar 

  47. Hirano A, Hon-Nami K, Kunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45(1–4):399–404

    Article  CAS  Google Scholar 

  48. Williams PJL, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3(5):554–590

    Article  CAS  Google Scholar 

  49. Sawayama S, Minowa T, Yokoyama SY (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenergy 17(1):33–39

    Article  CAS  Google Scholar 

  50. Yeang K (2008) Biofuel from algae. Archit Des 78(3):118–119

    Google Scholar 

  51. Hazlebeck D (2010) General atomics alternative fuels. Paper presented at the Pacific Rim Summit on Industrial Biotechnology & Bioenergy, Honolulu, HI, 11–14 December 2010

  52. Berner K (2010) Commercializing algal biofuels. Paper presented at the Pacific Rim Summit on Industrial Biotechnology & Bioenergy, Honolulu, HI, 11–14 December 2010

  53. Cyanotech (2007) Welcome to Cyanotech. http://www.cyanotech.com/index.html. Cited April 2011

  54. U.S. Department of Energy (2008) Memorandum of understanding between the state of Hawaii and the U.S. Department of Energy. Energy Efficiency and Renewable Energy, Washington, DC

    Google Scholar 

  55. Lingle L, Lau C, Liu T, Alm R, Awakuni C (2008) Energy agreement among the state of Hawaii, Division of Consumer Advocacy of the Department of Commerce and Consumer Affairs, and the Hawaiian Electric Companies. Hawaii Clean Energy Initiative, Hawaii

    Google Scholar 

  56. U.S. Energy Information Administration (2009) Total petroleum consumption estimates. http://www.eia.gov/emeu/states/hf.jsp?incfile=sep_fuel/html/fuel_use_pa.html. Cited April 2011

Download references

Acknowledgments

We gratefully acknowledge support from Solix Biosystems and thermal modeling support form Kristina M. Weyer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason C. Quinn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.14 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinn, J.C., Catton, K., Wagner, N. et al. Current Large-Scale US Biofuel Potential from Microalgae Cultivated in Photobioreactors. Bioenerg. Res. 5, 49–60 (2012). https://doi.org/10.1007/s12155-011-9165-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-011-9165-z

Keywords

Navigation