Skip to main content

Advertisement

Log in

Turning Maize Cobs into a Valuable Feedstock

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

With rising energy demand and limited resources, the need for alternative energy production is increasing. Maize cobs have an advantageous composition for the production of biofuels such as cellulosic ethanol but are currently left unused on the fields after harvest. Furthermore, cobs contain a low concentration of nitrogen (<1%). Therefore, cob harvest will not deplete soil fertility. Consequently, maize cobs are a cheap and promising source for sustainable energy production. Yet with primary focus on grain yield, no or little effort has been spent to increase cob biomass yield in addition to grain yield. Both cob and grain yield are complex inherited traits affected by the environment. Breeding of dual-purpose maize varieties with simultaneously increased cob and grain yield requires a deeper understanding of factors influencing both cob and grain development. In this article, the available knowledge on the genetics of cob formation and current and future applications of maize cob utilization are discussed to evaluate the prospects for development of dual-purpose maize varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADL:

Acid detergent lignin

ba1:

Barren stalk1

ba2:

Barren stalk2

BC1S1:

Back cross 1 self 1

bm:

Brown midrib

bm1:

Brown midrib1

bm2:

Brown midrib2

bm3:

Brown midrib3

C:

Carbon

Ca:

Calcium

CCM:

Corn cob mix

ct2:

Compact plant2

CY:

Cob yield

DM:

Dry matter

DNA:

Desoxyribonucleic acid

F1:

Filial 1 generation

F2:4 :

Filial 2:4 generation

F4:

Filial 4 generation

fea2:

Fasciated ear2

GEM:

Germplasm enhancement of maize

GY:

Grain yield

H:

Hydrogen

IBM:

Intermated B73xMo17

K:

Potassium

K2O:

Potassium oxides

MAS:

Marker-assisted selection

Mg:

Magnesium

N:

Nitrogen

NO x :

Nitrogen oxides

O:

Oxygen

P:

Phosphorus

P2O5 :

Phosphorus oxides

Ph1:

Pith abscission1

PI station:

Plant introduction station

PVP:

Plant variety protection

QTL:

Quantitative trait locus/loci

ra1:

Ramosa1

Ri1:

Rind abscission1

S:

Sulfur

S x O y :

Sulfur oxides

td1:

Thick tassel dwarf1

te1:

Terminal ear1

TEP:

Theoretic ethanol potential

TYP:

Theoretic ethanol yield potential

References

  1. US Energy Information Administration (2011) Available from: http://www.eia.doe.gov/totalenergy/data/annual/txt/ptb0201a.html. Accessed April 10, 2011

  2. USDA (2009) United States Department of Agriculture Crop Production 2009 Summary. Available from: http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1047. Accessed May 10, 2011

  3. Demirbas A (1997) Calculation of higher heating values of biomass fuels. Fuel 76(5):431–434

    Article  CAS  Google Scholar 

  4. Raveendran K, Ganesh A (1996) Heating value of biomass and biomass pyrolysis products. Fuel 75(15):1715–1720

    Article  CAS  Google Scholar 

  5. Wellhausen EJ, Roberts LM, Hernandez XE, Mangelsdorf PC (1952) Races of maize in Mexico. Their origin, characteristics and distribution. The Bussey Institution of Harvard University

  6. Lenz LW (1948) Comparative histology of the female inflorescence of Zea mays L. Ann Mo Bot Gard 34(4):353–376

    Article  Google Scholar 

  7. Fussell B (1992) The story of corn, 1st edn. Knopf, New York

    Google Scholar 

  8. Basta AH, El-Saied H (2003) Furfural production and kinetics of pentosans hydrolysis in corn cobs. Cellul Chem Technol 37(1–2):79–94

    CAS  Google Scholar 

  9. Ling H, Cheng K, Ge J, Ping W (2010) Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. New Biotechnol 28(6):673–678. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20466087. doi:10.1016/j.nbt.2010.05.004

  10. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291

    Article  PubMed  CAS  Google Scholar 

  11. Ras T, van de Ven M, Patterson-Kane EG, Nelson K (2002) Rats’ preferences for corn versus wood-based bedding and nesting materials. Lab Anim 36(4):420–425

    Article  PubMed  CAS  Google Scholar 

  12. Bozdech SL (1973) Use of corn cobs for seed drying through gasification. DEKALB AgResearch, Inc, Dekalb. Available from: http://www.anl.gov/PCS/acsfuel/preprint%20archive/Files/25_4_SAN%20FRANCISCO_08-80_0251.pdf. Accessed 17 October 2011

  13. Adesanya D, Raheem A (2009) Development of corn cob ash blended cement. Constr Build Mater 23(1):347–352

    Article  Google Scholar 

  14. Little D (2008) Minnesota utility to test corn cobs as power plant fuel. West Central Tribune (Wilmar, MN). Available from: http://www.soyatech.com/news_story.php?id=11269. Accessed 2 May 2011

  15. Mullen CA, Boateng AA, Goldberg NM, Lima IM, Laird DA, Hicks KB (2010) Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenerg 34(1):67–74

    Article  CAS  Google Scholar 

  16. Foley KM, Vander Hooven DIB (1981) Properties and industrial uses of corncobs. In: Pomeranz Y, Munck L (eds) Cereals—a renewable resource—theory and practice. The American Association of Cereal Chemists, St. Paul

    Google Scholar 

  17. POET, Sioux Falls, SD (2010) Available from: www.poet.com. Accessed 10 December, 2010

  18. Badger PC (2002) Ethanol from cellulose: a general review. Trends in new crops and new uses. Janick J, Whipkey A (eds) ASHS, Alexandria. pp 17–21 Available from: http://large.stanford.edu/publications/coal/references/docs/badger.pdf. Accessed November 5, 2011

  19. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioref 2:26–40

    Article  CAS  Google Scholar 

  20. Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Engin/Biotechnol 108:41–65

    Article  CAS  Google Scholar 

  21. Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17294186. Accessed November 5, 2011

    Google Scholar 

  22. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63(3):258–266

    Article  PubMed  CAS  Google Scholar 

  23. Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R et al (2008) How biotech can transform biofuels. Nat Biotechnol 26(2):169–172

    Article  PubMed  CAS  Google Scholar 

  24. Reese M (2009) Corn cobs for ethanol production process heating: a feasibility report of collection, storage and use of corn cobs as a renewable ethanol production process heating fuel. Available from: http://www.auri.org/research/CVEC_Final_Report_to_Office_of_Energy_Security_30.pdf

  25. SynGest, San Francisco, CA. Available from: www.syngest.com. Accessed 10 April, 2011

  26. Oswald J, Lane J (2010) Transformative technology: SynGest Cornucopia BioRefinery, Biofuel Digest. Available from: http://biofuelsdigest.com/bdigest/2010/06/16/transformative-technology-syngest-cornucopia-biorefinery. Accessed 12 March, 2011

  27. Mann L, Tolbert V, Cushman J (2002) Potential environmental effects of corn (Zea mays L.) stover removal with emphasis on soil organic matter and erosion. Agric Ecosyst Environ 89:149–166

    Article  Google Scholar 

  28. Blanco-Canqui H (2010) Energy crops and their implications on soil and environment. Agron J 102(2):403

    Article  CAS  Google Scholar 

  29. Dhugga K (2007) Maize biomass yield and composition for biofuels. Crop Sci 47(6):2211–2227

    Article  CAS  Google Scholar 

  30. Costa C, Dwyer LM, Stewart DW, Smith DL (2002) Crop ecology, management & quality nitrogen effects on grain yield and yield components of leafy and nonleafy maize genotypes. Crop Sci 42:1556–1563

    Article  Google Scholar 

  31. Varvel GE, Wilhelm WW (2008) Cob biomass production in the Western Corn Belt. BioEnerg Res 1(3–4):223–228

    Article  Google Scholar 

  32. Avilla-Segura M, Barak P, Hedtckee JL, Posner L (2011) Nutrient and alkalinity removal by corn grain, stover and cob harvest in Upper Midwest USA. Biomass Bioenerg 35:1190–1195

    Article  Google Scholar 

  33. Davidson D (2008) A look at some biomass harvest options in corn. Top Farmer Crop Workshop Newsletter. Available from: http://www.agecon.purdue.edu/topfarmer/newsletter/TFCW1_2008.pdf. Accessed 12 March, 2011

  34. Zych D (2008) The viability of corn cobs as a bioenergy feedstock . Available from: http://renewables.morris.umn.edu/biomass/documents/Zych-TheViabilityOfCornCobsAsABioenergyFeedstock.pdf. Accessed 10 April, 2011

  35. Wehrspann J (2009) Concept cob collectors. Farm industry news. Available from: http://farmindustrynews.com/farm-equipment/concept-cob-collectors?page=1. Accessed 2 May 2011

  36. Shinners KJ, Binversie BN, Muck R, Weimer P (2007) Comparison of wet and dry corn stover harvest and storage. Biomass Bioenerg 31(4):211–221

    Article  Google Scholar 

  37. Shinners KJ, Binversie BN (2007) Fractional yield and moisture of corn stover biomass produced in the Northern US Corn Belt. Biomass Bioenerg 31(8):576–584

    Article  Google Scholar 

  38. Shinners KJ, Binversie BN, Savoie P (2003) Harvest and storage of wet and dry corn stover as a biomass feedstock. Presented at ASAE Annua. St. Joseph, Michigan: The American Society of Agricultural and Biological Engineers Available from: http://i-farmtools.iastate.edu/ref/storage_shinners_ASAE.pdf. Accessed November 5, 2011

  39. Kaliyan N, Morey RV (2010) Densification characteristics of corn cobs. Fuel Process Technol 91(5):559–565

    Article  CAS  Google Scholar 

  40. Dunning JW, Winter P, Dallas D (1948) The storage of corn cobs and other agricultural residues for industrial use. Agric Eng 29(11–13):17

    Google Scholar 

  41. Hess JR, Kenney KL, Ovard LP, Searcy EM, Wright CT (2009) Uniform-format solid feedstock supply system: a commodity-scale design to produce an infrastructure-compatible bulk solid from lignocellulosic. Biomass Section 3, DRAFT, Idaho Falls, ID. Available from: https://inlportal.inl.gov/portal/server.pt/gateway/PTARGS_0_2_37185_0_0_18/Design_Report_Sec_3_Draft_3–31.pdf

  42. Beavis WD, Smith OS, Grant D, Fincher R (1994) Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci 34:882–896

    Article  Google Scholar 

  43. Smith RD, Peart RM, Liljedahl JB, Barrett JR, Doering OC (1985) Corncob property changes during outside storage. Trans ASAE 28(3):937–948

    Google Scholar 

  44. Sawyer J, Mallarino A, Hanway JJ (2007) Nutrient removal when harvesting corn stover. Iowa State University Research. Integrated Crop. Available from: http://www.ipm.iastate.edu/ipm/icm/2007/8-6/nutrients.html. Accessed 18 April, 2011

  45. Loesch PJ, Stark CF, Zuber MS (1976) Effects of plant density on the quality of cobs used for corn cob pipes. Crop Sci 16:706–709

    Article  Google Scholar 

  46. Erickson MJ, Tyner WE (2010) The economics of harvesting corn cobs for energy. Department of Agricultural Economics, Purdue University. Available from: http://www.agecon.purdue.edu/extension/pubs/paer/2010/december/tyner.asp Accessed 18 April, 2011

  47. Lorenz AJ, Coors JG, de Leon N, Wolfrum EJ, Hames BR, Sluiter AD et al (2009) Characterization, genetic variation, and combining ability of maize traits relevant to the production of cellulosic ethanol. Crop Sci 49(1):85

    Article  CAS  Google Scholar 

  48. Seebauer JR, Moose SP, Fabbri BJ, Crossland LD, Below FE (2004) Amino acid metabolism in maize earshoots. Implications for assimilate preconditioning and nitrogen signaling 1. Society 136:4326–4334

    CAS  Google Scholar 

  49. Halvorson AD, Johnson JMF (2009) Corn cob characteristics in irrigated Central Great Plains studies. Agron J 101(2):390

    Article  CAS  Google Scholar 

  50. Holthaus JF (2010) US patent ch854628

  51. Trifunovic S (2009) US patent ch521699

  52. Trifunovic S (2010) US patent ch999668

  53. Mikel MA (2008) Genetic diversity and improvement of contemporary proprietary North American dent corn. Crop Sci 48(5):1686

    Article  Google Scholar 

  54. Veldboom LR, Lee M (1996) Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: I. grain yield and yield components. Crop Sci 36:1310–1319

    Article  CAS  Google Scholar 

  55. Ross AJ (2002) Genetic analysis of ear length and correlated traits in maize. Dissertation Iowa State University, Ames, IA

  56. Hallauer AR, Ross AJ, Lee M (2010) Long-term divergent selection for ear length in maize. In: Plant breeding reviews: long-term selection: crops, animals, and bacteria. Wiley, New York

  57. Subcommittee on Feed Composition, Committee on Animal Nutrition, Board on Agriculture and Renewable Energy, Commission on Natural Resources, National Research Council (1982) United States–Canadian tables of feed composition. National Academy Press, Washington DC. Available from: http://www.nap.edu/openbook.php?record_id=1713&page=R1. Accessed November 5, 2011

  58. Morrison FB (1961) Feeds and feeding, 9th edn. Morrison, Clinton

    Google Scholar 

  59. Tuah AK, Ørskov ER (1989) A study on the degradation of untreated ammonia treated, sodium hydroxide-treated and water soaked corn cob and cocoa pod husk in the rumen using the nylon bag technique. In: Said AN, Kategile JA, Dzowela BH Overcoming constraints to the efficient utilization of agricultural by-products. Proceedings of 4th ARNAB Workshop held in Bamenda, Cameroon, 20–27 Oct, 1987. ILCA, Bamenda, Cameroon; 1989. p. 363–373

  60. Tsai W (2001) Preparation of activated carbons from corn cob catalyzed by potassium salts and subsequent gasification with CO2. Bioresour Technol 78(2):203–208

    Article  PubMed  CAS  Google Scholar 

  61. Yu F, Steele PH, Ruan R (2010) Microwave pyrolysis of corn cob and characteristics of the pyrolytic chars. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 32(5):475–484

    Article  Google Scholar 

  62. Gaur S, Rao TR, Reed TB, Grover PD (1992) Kinetics of corn cob char gasification in carbon dioxide. Pet Sci Technol 10(9):1461–1499

    CAS  Google Scholar 

  63. Ebeling JM, Jenkins BM (1985) Physical and chemical properties of biomass fuels. Trans Am Soc Agric Eng 28(3):898–902

    Google Scholar 

  64. Feng J, Yuhong Q, Green A (2006) Analytical model of corn cob pyroprobe–FTIR data. Biomass Bioenerg 30(5):486–492

    Article  CAS  Google Scholar 

  65. Arvelakis S (2002) Physicochemical upgrading of agroresidues as feedstocks for energy production via thermochemical conversion methods. Biomass Bioenerg 22(5):331–348

    Article  CAS  Google Scholar 

  66. Ioannidou O, Zabaniotou A, Antonakou EV, Papazisi KM, Lappas AA, Athanassiou C (2009) Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renew Sustain Energy Rev 13(4):750–762

    Article  CAS  Google Scholar 

  67. Garrote G, Domínguez H, Parajó JC (2002) Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharide production. J Food Eng 52(3):211–218

    Article  Google Scholar 

  68. Adeyemi OA, Familade FO (2003) Replacement of maize by rumen filtrate fermented corn-cob in layer diets. Bioresour Technol 90(2):221–224

    Article  PubMed  CAS  Google Scholar 

  69. Donnelly BJ, Helm JL, Lee HA (1973) The carbohydrate composition of corn cob hemicelluloses. Cereal Chem 50:548–552

    CAS  Google Scholar 

  70. Kirkpatrick KM (2008) The evaluation of maize genotypes for potential use in cellulosic ethanol production. MS thesis, Iowa State University, Ames, IA

  71. Weatherwax P (1917) The development of the spikelets of Zea mays. Bull Torrey Bot Club 44(10):483–496

    Article  Google Scholar 

  72. Reeves RG (1950) Morphology of the ear and tassel of maize. Am J Bot 37(9):697–704

    Article  Google Scholar 

  73. Veit B, Schmidt RJ, Hake S, Yanofsky MF (1993) Maize floral development: new genes and old mutants. The Plant Cell 5:1205–1215

    PubMed  Google Scholar 

  74. Vollbrecht E, Schmidt R (2009) Development of the inflorescences. In: Bennetzen J, Hake S (eds) Handbook of maize: its biology. Springer, New York

    Google Scholar 

  75. Bonnet OT (1948) Ear and tassel development in maize. Ann Mo Bot Gard 35(4):269–287

    Article  Google Scholar 

  76. Murdy WH (1960) The strengthening system in the stem of maize. Ann Mo Bot Gard 47(3):205–226

    Article  Google Scholar 

  77. Galinat WC (1975) The evolutionary emergence of maize. Bull Torrey Bot Club 102(6):313–324

    Article  Google Scholar 

  78. Reeves RG (1946) Methods for studying the maize ear. Bot Gazette 107:425

    Article  Google Scholar 

  79. Laubengayer RA (1946) The vascular anatomy of the mature ear and tassel of Zea mays. Am J Bot 33:823

    Google Scholar 

  80. Nickerson NH (1954) Morphological analysis of the maize ear. Am J Bot 41(2):87–92

    Article  Google Scholar 

  81. BeMiller JN, Johnson DC, Pappelis A (1970) Relationship of nitrogen, crude fiber, ether-soluble substances, and mineral nutrient to cell death in corn cob parenchyma tissue. Phytopathology 60:513–517

    Article  CAS  Google Scholar 

  82. Katsanos RA, Pappelis AJ, BeMiller JN (1971) Parenchyma cell death in elongating corn cobs. Crop Sci 11:458–459

    Article  Google Scholar 

  83. Bavec F, Bavec M (2002) Effects of plant population on leaf area index, cob characteristics and grain yield of early maturing maize cultivars (FAO 100–400). Eur J Agron 16(2):151–159

    Article  Google Scholar 

  84. Cutler HC (1946) Races of maize in South America. Bot Mus Leafl 12:257–292

    Google Scholar 

  85. Kiesselbach TA (1999) The structure and reproduction of corn, 50th edn. Cold Spring Harbor, New York

    Google Scholar 

  86. Coe EH, Neuffer MG, Hoisington DA (1988) The genetics of corn. In: Sprague G, Dudley JW (eds) Corn and corn improvement. American Society of Agronomy, Madison, pp 81–259

    Google Scholar 

  87. Eubanks MW (2001) The origin of maize: evidence for Tripsacum ancestry. In: Janick J (ed) Plant breeding reviews, vol 20. Wiley, Oxford

    Google Scholar 

  88. Gallavotti A, Long JA, Stanfield S, Yang X, Jackson D, Vollbrecht E et al (2010) The control of axillary meristem fate in the maize ramosa pathway. Development 137:2849–2856

    Article  PubMed  CAS  Google Scholar 

  89. Zhang H, Zheng Z, Liu X, Li Z, He C, Liu D et al (2010) QTL mapping for ear length and ear diameter under different nitrogen regimes in maize. Afr J Agric Res 5(8):626–630

    Google Scholar 

  90. Li M, Guo X, Zhang M, Wang X, Zhang G, Tian Y et al (2010) Mapping QTLs for grain yield and yield components under high and low phosphorus treatments in maize (Zea mays L.). Plant Sci 178(5):454–462

    Article  CAS  Google Scholar 

  91. Li YL, Li XH, Li JZ, Fu JF, Wang YZ, Wei MG (2009) Dent corn genetic background influences QTL detection for grain yield and yield components in high-oil maize. Euphytica 169(2):273–284

    Article  Google Scholar 

  92. Liu Z, Tang JH, Wie XY, Wang CL, Tian GW, Hu ZM et al (2007) QTL mapping of ear traits under low and high nitrogen conditions in maize. Sci Agric Sin 40(11):2409–2417

    CAS  Google Scholar 

  93. Sabadin PK, Augusto A, Garcia F (2008) QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas 203:194–203

    Article  Google Scholar 

  94. Upadyayula N, da Silva HS Bohn MO, Rocheford TR (2006) Genetic and QTL analysis of maize tassel and ear inflorescence architecture, TAG. Theor Appl Genet 112(4):592–606, Theoretische und angewandte Genetik

    Article  PubMed  CAS  Google Scholar 

  95. Choe E (2006) Genetic and QTL analysis of pericarp thickness and ear inflorescence architecture in South Korean waxy corn germplasm. Paper presented at the ASA-CSSA-SSSA International Annual Meetings 2006 Indianapolis, IN, 12-16- November 2006. Available from: http://acs.confex.com/crops/2006am/techprogram/P27693.HTM. Accessed November 5, 2011

  96. Rocheford T (2006) QTL analysis of pericarp thickness and ear inflorescence architecture in South Korean waxy corn germplasm. Paper presented at the ASA-CSSA-SSSA International Annual Meetings 2006, Indianapolis, IN, 12-16- November 2006. Available at http://crops.confex.com/crops/2006am/techprogram/P27705.HTM. Accessed November 5, 2011

  97. Maize GDB. Available from: www.maizegdb.org. Accessed April 10, 2011

  98. Taylor NG (2008) Cellulose biosynthesis and deposition in higher plants. New Phytol 178(2):239–252

    Article  PubMed  CAS  Google Scholar 

  99. Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nature reviews. Genetics 9(6):433–443

    PubMed  CAS  Google Scholar 

  100. Penning BW, Hunter CT, Tayengwa R, Eveland AL, Dugard CK, Olek AT et al (2009) Genetic resources for maize cell wall biology. Plant Physiol 151(4):1703–1728

    Article  PubMed  CAS  Google Scholar 

  101. Appenzeller L, Doblin M, Barreiro R, Wang H, Niu X, Kollipara K et al (2004) Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 11(3/4):287–299

    Article  CAS  Google Scholar 

  102. Pedersen JF, Vogel KP, Funnell DL (2005) Impact of reduced lignin on plant fitness. Crop Sci 45:812–819

    Article  CAS  Google Scholar 

  103. Chen Y, Zein I, Brenner EA, Andersen JR, Landbeck M, Ouzunova M et al (2010) Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.). BMC Plant Biol 10:12

    Article  PubMed  Google Scholar 

  104. Barnes RF, Muller LD, Bauman LF, Colenbrander VF (1971) In vitro dry matter disappearance of brown midrib mutants of maize (Zea mays L.). J Anim Sci 33:881–884

    Google Scholar 

  105. Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L et al (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168(4):2169–2185

    Article  PubMed  CAS  Google Scholar 

  106. Germplasm Enhancement of Maize Project. Available from http://www.public.iastate.edu/~usda-gem/GEM_Project/GEM_Project.htm. Accessed 2 May 2011

  107. Wilhelm WW, Johnson JMF, Hatfield JL, Voorhees WB, Linden DR (2004) Crop and soil productivity response to corn residue removal: a literature review. Agron J 96(1):1–17

    Article  Google Scholar 

  108. Gani A, Naruse I (2007) Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew Energy 32(4):649–661

    Article  CAS  Google Scholar 

  109. Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye K et al (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90(4):473–481

    Article  PubMed  CAS  Google Scholar 

  110. Li A, Khraisheh M (2010) Bioenergy II: bio-ethanol from municipal solid waste (MSW): the role of biomass properties and structures during the ethanol conversion process. Int J Chem React Eng 8: A85. Available at: http://www.bepress.com/ijcre/vol8/A85. Accessed November 5, 2011

  111. Nychas GJE (1995) Natural antimicrobials from plants. In: Gould GW (ed) New methods of food preservation. Blackie Academic and Professional, London

    Google Scholar 

  112. Duvick DN, Cassman KG (1999) Post-Green Revolution trends in yield potential of temperate maize in the North-Central United States. Crop Sci 39:1622–1630

    Article  Google Scholar 

  113. Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci 96(11):5995–6000

    Article  PubMed  CAS  Google Scholar 

  114. Power J, Schepers J (1989) Nitrate contamination of groundwater in North America. Agric Ecosyst Environ 26(3–4):165–187

    Article  CAS  Google Scholar 

  115. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7(3):737–750

    Google Scholar 

  116. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J et al (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240

    Article  PubMed  CAS  Google Scholar 

  117. Flint-Garcia SN, Buckler ES, Tiffin P, Ersoz E, Springer NM (2008) Heterosis is prevalent for multiple traits in diverse maize germplasm. PLoS One 4(10):e7433. doi:10.1371/journal.pone.0007433

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Jansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, C., Lübberstedt, T. Turning Maize Cobs into a Valuable Feedstock. Bioenerg. Res. 5, 20–31 (2012). https://doi.org/10.1007/s12155-011-9158-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-011-9158-y

Keywords

Navigation