Skip to main content
Log in

Identification of proteins from wild cardoon flowers (Cynara cardunculus L.) by a proteomic approach

  • Original Article
  • Published:
Journal of Chemical Biology

Abstract

Proteomic approach was applied to identify total proteins, particularly the enzymatic content, from wild cardoon flowers. As the selection of an appropriate sample preparation method is the key for getting reliable results, two different extraction/precipitation methods (trichloroacetic acid and phenol/ammonium acetate) were tested on fresh and lyophilized flowers. After two-dimensional electrophoresis (2D–E) separations, a better protein pattern was obtained after phenol extraction from lyophilized flowers. Only 46 % of the total analyzed spots resulted in a protein identification by mass spectrometry MALDI-TOF. Four proteases (cardosins A, E, G, and H), which have become a subject of great interest in dairy technology, were identified. They presented molecular weights and isoelectric points very close and high levels of homology between matched peptides sequences. The absence of the other cardosins (B, C, D, and F) could be an advantage, as it reduces the excessive proteolytic activity that causes bitter flavors and texture defects, during cheese making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jacob M, Jaros D, Rohm H (2011) Recent advances in milk clotting enzymes. Int J Dairy Technol 64:14–33

    Article  CAS  Google Scholar 

  2. Anusha R, Singh MK, Bindhu O (2014) Characterisation of potential milk coagulants from Calotropis gigantea plant parts and their hydrolytic pattern of bovine casein. Eur Food Res Technol 238:997–1006

    Article  CAS  Google Scholar 

  3. Grozdanovic MM, Burazer L, Gavrovic-Jankulovic M (2013) Kiwifruit (Actinidia deliciosa) extract shows potential as a low-cost and efficient milk-clotting agent. Int Dairy J 32:46–52

    Article  CAS  Google Scholar 

  4. Duarte AR, Duarte DMR, Moreira KA, Cavalcanti MTH et al (2009) Jacaratia corumbensis O. Kuntze a new vegetable source for milk-clotting enzymes. Braz Arch Biol Technol 52:1–9

    Article  CAS  Google Scholar 

  5. Fernández J, Curt MD, Aguado PL (2006) Industrial applications of Cynara cardunculus L. for energy and other uses. Ind Crop Prod 24:222–229

    Article  Google Scholar 

  6. da Costa DS, Pereira S, Pissarra J (2011) The heterologous systems in the study of cardosin B trafficking pathways. Plant Signal Behav 6:895–897

    Article  Google Scholar 

  7. Veríssimo P, Esteves C, Faro C, Pires E (1995) The vegetable rennet of Cynara cardunculus L. contains two proteinases with chymosin and pepsin-like specificities. Biotechnol Lett 17:621–626

    Article  Google Scholar 

  8. Cavalli SV, Lufrano D, Colombo ML, Priolo N (2013) Properties and applications of phytepsins from thistle flowers. Phytochmistry 92:16–32

  9. Faro C, Ramalho-Santos M, Vieira M, Mendes A et al (1999) Cloning and characterization of cDNA encoding cardosin A, an RGD-containing plant aspartic proteinase. J Biol Chem 274:28724–28729

    Article  CAS  Google Scholar 

  10. Sarmento AC, Lopes H, Oliveira CS, Vitorino R et al (2009) Multiplicity of aspartic proteinases from Cynara cardunculus L. Planta 230:429–439

    Article  CAS  Google Scholar 

  11. Tang J, Wong RN (1987) Evolution in the structure and function of aspartic proteases. J Cell Biochem 33:53–63

    Article  CAS  Google Scholar 

  12. Pimentel C, Van Der Straeten D, Pires E, Faro C, Rodrigues-Pousada C (2007) Characterization and expression analysis of the aspartic protease gene family of Cynara cardunculus L. FEBS J 274:2523–2539

    Article  CAS  Google Scholar 

  13. Heimgartner U, Pietrzak M, Geertsen R, Brodelius P et al (1990) Purification and partial characterization of milk clotting proteases from flowers of Cynara cardunculus. Phytochmistry 29:1405–1410

    Article  CAS  Google Scholar 

  14. Ordiales E, Martín A, Benito MJ, Hernández A et al (2012) Technological characterisation by free zone capillary electrophoresis (FCZE) of the vegetable rennet (Cynara cardunculus) used in “Torta del Casar” cheese-making. Food Chem 133:227–235

    Article  CAS  Google Scholar 

  15. Rabilloud T, Lelong C (2011) Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteome 74:1829–1841

    Article  CAS  Google Scholar 

  16. Saez V, Fasoli E, D'Amato A, Simó-Alfonso E, Righetti PG (2013) Artichoke and Cynar liqueur: Two (not quite) entangled proteomes. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1834:119–126

    Article  CAS  Google Scholar 

  17. Hai-wei L, Zhao-pu L, Ling L, Geng-mao Z (2007) Studies on the Antifungal Activities and Chemical Components of Extracts from Helianthus tuberosus Leaves. Nat Prod Res Dev 19(3):405

  18. Maldonado AM, Echevarría-Zomeño S, Jean-Baptiste S, Hernández M, Jorrín-Novo JV (2008) Evaluation of three different protocols of protein extraction for Arabidopsis thaliana leaf proteome analysis by two-dimensional electrophoresis. J Proteome 71:461–472

    Article  CAS  Google Scholar 

  19. Saint-Denis T, Goupy J (2004) Optimization of a nitrogen analyser based on the Dumas method. Anal Chim Acta 515:191–198

    Article  CAS  Google Scholar 

  20. Bchir B, Besbes S, Karoui R, Attia H et al (2012) Effect of air-drying conditions on physico-chemical properties of osmotically pre-treated pomegranate seeds. Food Bioprocess Technol 5:1840–1852

    Article  CAS  Google Scholar 

  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  22. Wang W, Tai F, Chen S (2008) Optimizing protein extraction from plant tissues for enhanced proteomics analysis. J Sep Sci 31:2032–2039

    Article  CAS  Google Scholar 

  23. Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electophoresis 21:1037–1053

    Article  Google Scholar 

  24. Vâlcu CM, Schlink K (2006) Reduction of proteins during sample preparation and two-dimensional gel electrophoresis of woody plant samples. Proteomics 6:1599–1605

  25. Vincent D, Wheatley MD, Cramer GR (2006) Optimization of protein extraction and solubilization for mature grape berry clusters. Electophoresis 27:1853–1865

    Article  CAS  Google Scholar 

  26. Zheng Q, Song J, Doncaster K, Rowland E, Byers DM (2007) Qualitative and quantitative evaluation of protein extraction protocols for apple and strawberry fruit suitable for two-dimensional electrophoresis and mass spectrometry analysis. J Agric Food Chem 55:1663–1673

  27. Pavoković D, Križnik B, Krsnik-Rasol M (2012) Evaluation of protein extraction methods for proteomic analysis of non-model recalcitrant plant tissues. Croat Chem Acta 85:177–183

  28. Saravanan RS, Rose JK (2004) Critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics 4:2522–2532

  29. Rodrigues SP, Ventura JA, Zingali R, Fernandes P (2009) Evaluation of sample preparation methods for the analysis of papaya leaf proteins through two-dimensional gel electrophoresis. Phytochem Anal 20:456–464

  30. Wu X, Xiong E, Wang W, Scali M, Cresti M (2014) Universal sample preparation method integrating trichloroacetic acid/acetone precipitation with phenol extraction for crop proteomic analysis. Nat Protoc 9:362–374

    Article  CAS  Google Scholar 

  31. Sampaio PN, Fortes AM, Cabral JM, Pais MS, Fonseca LP (2008) Production and characterization of recombinant cyprosin B in Saccharomyces cerevisiae. J Biosci Bioeng 105:305–312

    Article  CAS  Google Scholar 

  32. Barros RM, Ferreira CA, Silva SV, Malcata FX (2001) Quantitative studies on the enzymatic hydrolysis of milk proteins brought about by cardosins precipitated by ammonium sulfate. Enzym Microb Technol 29:541–547

  33. Silva S, Malcata F (2005) Partial identification of water-soluble peptides released at early stages of proteolysis in sterilized ovine cheese-like systems: influence of type of coagulant and starter. J Dairy Sci 88:1947–1954

  34. Simões I, Mueller EC, Otto A, Bur D et al (2005) Molecular analysis of the interaction between cardosin A and phospholipase Dα. FEBS J 272:5786–5798

  35. Hatsugai N, Kuroyanagi M, Yamada K, Meshi T et al (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855–858

    Article  CAS  Google Scholar 

  36. Agboola SO, Chan HH, Zhao J, Rehman A (2009) Can the use of Australian cardoon (Cynara cardunculus L.) coagulant overcome the quality problems associated with cheese made from ultrafiltered milk? LWT- Food Sci Technol 42:1352–1359

  37. de Carvalho MHC, d’Arcy-Lameta A, Roy-Macauley H, Gareil M et al (2001) Aspartic protease in leaves of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata L. Walp): enzymatic activity, gene expression and relation to drought susceptibility. FEBS Lett 492:242–246

  38. Schaller A, Ryan CA (1996) Molecular cloning of a tomato leaf cDNA encoding an aspartic protease, a systemic wound response protein. Plant Mol Biol 31:1073–1077

  39. Asakura T, Watanabe H, Abe K, Arai S (1995) Rice aspartic proteinase, oryzasin, expressed during seed ripening and germination, has a gene organization distinct from those of animal and microbial aspartic proteinases. Eur J Biochem 232:77–83

  40. Panavas T, Pikula A, Reid PD, Rubinstein B, Walker EL (1999) Identification of senescence-associated genes from daylily petals. Plant Mol Biol 40:237–248

  41. Thomas G (1992) MAP kinase by any other name smells just as sweet. Cell 68:3–6

  42. Wilson C, Eller N, Gartner A, Vicente O, Heberle-Bors E (1993) Isolation and characterization of a tobacco cDNA clone encoding a putative MAP kinase. Plant Mol Biol 23:543–551

Download references

Acknowledgments

We would like to thank Wallonie-Bruxelles International, University of Liège and University of Sfax for financial support to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Ben Amira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Amira, A., Bauwens, J., De Pauw, E. et al. Identification of proteins from wild cardoon flowers (Cynara cardunculus L.) by a proteomic approach. J Chem Biol 10, 25–33 (2017). https://doi.org/10.1007/s12154-016-0161-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-016-0161-9

Keywords

Navigation