Skip to main content
Log in

FluoroNanogold: an important probe for correlative microscopy

  • Review
  • Published:
Journal of Chemical Biology

Abstract

Correlative microscopy is a powerful imaging approach that refers to observing the same exact structures within a specimen by two or more imaging modalities. In biological samples, this typically means examining the same sub-cellular feature with different imaging methods. Correlative microscopy is not restricted to the domains of fluorescence microscopy and electron microscopy; however, currently, most correlative microscopy studies combine these two methods, and in this review, we will focus on the use of fluorescence and electron microscopy. Successful correlative fluorescence and electron microscopy requires probes, or reporter systems, from which useful information can be obtained with each of the imaging modalities employed. The bi-functional immunolabeling reagent, FluoroNanogold, is one such probe that provides robust signals in both fluorescence and electron microscopy. It consists of a gold cluster compound that is visualized by electron microscopy and a covalently attached fluorophore that is visualized by fluorescence microscopy. FluoroNanogold has been an extremely useful labeling reagent in correlative microscopy studies. In this report, we present an overview of research using this unique probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ackerson CJ, Powell RD, Hainfeld JF (2010) Site-specific biomolecule labeling with gold clusters. Methods Enzymol 481:195–230

    Article  CAS  Google Scholar 

  2. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76

    Article  CAS  Google Scholar 

  3. Baschong W, Lucocq JM, Roth J (1985) “Thiocyanate gold”: small (2-3 nm) colloidal gold for affinity cytochemical labeling in electron microscopy. Histochemistry 83:409–411

  4. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  Google Scholar 

  5. Brown E, Verkade P (2010) The use of markers for correlative light electron microscopy. Protoplasma 244:91–97

    Article  Google Scholar 

  6. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  Google Scholar 

  7. Bushong EA, Johnson DD, Kim KY, Terada M, Hatori M, Peltier ST, Panda S, Merkle A, Ellisman MH (2014) X-Ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens. Microsc Microanal 13:1–8

    Google Scholar 

  8. Carlemalm E, Garavito M, Villiger W (1982) Resin development for electron microscopy and an analysis of embedding at low temperature. J Microsc 126:123–143

    Article  CAS  Google Scholar 

  9. Cheutin T, Sauvage C, Tchelidze P, O’Donohue MF, Kaplan H, Beorchia A, Ploton D (2007) Visualizing macromolecules with fluoronanogold: from photon microscopy to electron microscopy. Methods Cell Biol 79:559–574

    Article  CAS  Google Scholar 

  10. Cortese K, Diaspro A, Tacchetti C (2009) Advanced correlative light/electron microscopy: current methods and new developments using Tokuyasu cryosections. J Histochem Cytochem 57:1103–1112

    Article  CAS  Google Scholar 

  11. Dantuma NP, Pijnenburg MA, Diederen JH, Van der Horst DJ (1998) Electron microscopic visualization of receptor-mediated endocytosis of DiI-labeled lipoproteins by diamainobenzidine photoconversion. J Histochem Cytochem 46:1085–1090

    Article  CAS  Google Scholar 

  12. De Brabander M, Geuens G, Nuydens R, Moeremans M, De Mey J (1985) Probing microtubule-dependent intracellular motility with nanometre particle video ultramicroscopy (nanovid ultramicroscopy). Cytobios 43:273–283

    Google Scholar 

  13. De Brabander M, Nuydens R, Geuens G, Moeremans M, De Mey J (1986) The use of submicroscopic gold particles combined with video contrast enhancement as a simple molecular probe for the living cell. Cell Motil Cytoskel 6:105–113

    Article  Google Scholar 

  14. Deerinck TJ (2008) The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging. Toxicol Path 36:112–116

    Article  CAS  Google Scholar 

  15. Deerinck TJ, Martone ME, Lev-Ram V, Green DP, Tsien RY, Spector DL, Huang S, Ellisman MH (1994) Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy. J Cell Biol 126:901–910

    Article  CAS  Google Scholar 

  16. Deerinck TJ, Giepmans BN, Smarr BL, Martone ME, Ellisman MH (2007) Light and electron microscopic localization of multiple proteins using quantum dots. Methods Mol Biol 374:43–54

    CAS  Google Scholar 

  17. Diebolder CA, Koster AJ, Koning RI (2012) Pushing the resolution limits in cryo electron tomography of biological structures. J Microsc 248:1–5

    Article  CAS  Google Scholar 

  18. Förster T (1948) Zwischenmolekulare Energiewandung und Fluoreszenz. Annu Rev Plant Physiol Plant Mol Biol 2:55–75

    Google Scholar 

  19. Fabig G, Kretschmar S, Weiche S, Eberle D, Ader M, Kurth T (2012) Labeling of ultrathin resin sections for correlative light and electron microscopy. Methods Cell Biol 111:75–93

    Article  CAS  Google Scholar 

  20. Gaietta GM, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW, Sosinsky GE, Tsien RY, Ellisman MH (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507

    Article  CAS  Google Scholar 

  21. Geuens G, Gundersen GG, Nuydens R, Cornelissen F, Bulinski JC, deBrabander M (1986) Ultrastructural colocalization of tyrosinated and detyrosinated α-tubulin in interphase and mitotic cells. J Cell Biol 103:1883–1893

    Article  CAS  Google Scholar 

  22. Geuze HJ, Slot JW, Scheffer RCT, van der Ley PA (1981) Use of colloidal gold particles in double-labeling immunoelectron microscopy of ultrathin frozen tissue sections. J Cell Biol 89:653–665

    Article  CAS  Google Scholar 

  23. Geuze HJ, Slot JW, Strous GJ, Hasilik A, von Figura K (1984) Ultrastructural localization of the mannose-6-phosphatae receptor in rat liver. J Cell Biol 98:2047–2054

    Article  CAS  Google Scholar 

  24. Gibson KH, Vorkel D, Meissner J, Verbavatz J-M (2014) Fluorescing the electron: strategies in correlative experimental design. Methods Cell Biol 124:23–54

    Article  Google Scholar 

  25. Giepmans BN, Deerinck TJ, Smarr BL, Jones YZ, Ellisman MH (2005) Correlated light and electron microscopic imaging of multiple endogenous proteins using quantum dots. Nat Methods 10:43–749

    Google Scholar 

  26. Giepmans BN (2008) Bridging fluorescence microscopy and electron microscopy. Histochem Cell Biol 130:211–217

    Article  CAS  Google Scholar 

  27. Goodman SL, Park K, Albrecht RM (1991) A correlative approach to colloidal gold labeling with video-enhanced light microscopy, low-voltage scanning electron microscopy, and high-voltage electron microscopy. In: Hayat MA (ed) Colloidal gold: principles, methods and applications, vol 3. Academic Press, San Diego, pp 369–409

    Google Scholar 

  28. Grabenbauer M, Geerts WJ, Fernadez-Rodriguez J, Hoenger A, Koster AJ, Nilsson T (2005) Correlative microscopy and electron tomography of GFP through photooxidation. Nat Methods 2:857–862

    Article  CAS  Google Scholar 

  29. Graham RC Jr, Karnovsky MJ (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14:291–302

    Article  CAS  Google Scholar 

  30. Griffiths G (2001) Bringing electron microscopy back into focus for cell biology. Trends Cell Biol 11:153–154

    Article  CAS  Google Scholar 

  31. Griffiths G, Brands R, Burke B, Louvard D, Warren G (1982) Viral membrane proteins acquire galactose in trans Golgi cisternae during intracellular transport. J Cell Biol 95:781–792

    Article  CAS  Google Scholar 

  32. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Micros 198:82–87

    Article  CAS  Google Scholar 

  33. Hainfeld JF (1987) A small gold-conjugated antibody label: improved resolution for electron microscopy. Science 263:450–453

    Article  Google Scholar 

  34. Hainfeld JF, Furuya FR (1992) A 1.4nm gold cluster covalently attached to antibodies improves immunolabeling. J Histochem Cytochem 40:177–184

    Article  CAS  Google Scholar 

  35. Hainfeld JF, Powell RD, Stein JK, Hacker GW, Hauser-Kronberger C, Cheung ALM, Schofer C (1999) Gold-based autometallography. Microsc Microanal 5(2):486–487

    Google Scholar 

  36. Hainfeld JF, Powell RD, Hacker GW (2004) Nanoparticle molecular labels. In: Mirkin CA, Niemeyer CM (eds) Nanobiotechnology. Wiley-VCH, Weinheim, p 23

    Google Scholar 

  37. Hainfeld JF, Furuya FR, Powell RD (1999) Metallosomes. J Struct Biol 127:152–160

    Article  CAS  Google Scholar 

  38. Hansen BT, Dorward DW, Nair V, Fischer ER (2010) Improved preservation of HeLa cells by sequential chemical addition during microwave- assisted freeze substitution. Microsc Microanal 16(2):978–979

    Article  CAS  Google Scholar 

  39. Harata N, Ryan TA, Smith SJ, Buchanan J, Tsien RW (2001) Visualizing recycling synaptic vesicles in hippocampal neurons by FM 1-43 photoconversion. Proc Natl Acad Sci USA 98:12748–12753

  40. Hodgson L, Tavare J, Verkade P (2014) Development of a quantitative correlative light electron microscopy technique to study GLUT4 trafficking. Protoplasma 251:403–416

    Article  CAS  Google Scholar 

  41. He X, Ma N (2014) An overview of recent advance of quantum dots for biomedical applications. Colloids Surf B: Biointerfaces. doi:10.1016/j.colsurfb.2014.06.003

    Google Scholar 

  42. Jahn KA, Barton DA, Kobayashi K, Ratinac KR, Overall RL, Braet F (2012) Correlative microscopy: providing new understanding in the biomedical and plant sciences. Micron 43:565–582

    Article  CAS  Google Scholar 

  43. Jones IW, Barik J, O’ Neill MJ, Wonnacott S (2004) Alpha bungarotoxin-1.4 nm gold: a novel conjugate for visualising the precise subcellular distribution of alpha 7* nicotinic acetylcholine receptors. J Neurosci Methods 134:65–74

    Article  CAS  Google Scholar 

  44. Joshi VN, Mitra D, England MD, Furuya FR, Powell RD, Hainfeld JF (2010) Large covalently linked fluorescent and gold nanoparticle immunoprobes. Microsc Microanal 16(2):966–967

    Article  CAS  Google Scholar 

  45. Kandela IK, Meyer DA, Oshel PE, Rosa-Molinar E, Albrecht RM (2003) Fluorescence quenching by colloidal heavy metals: implications for correlative fluorescence and electron microscopy studies. Microsc Microanal 9(2):1194–1195

    Google Scholar 

  46. Kandela IK, Bleher R, Albrecht RM (2007) Multiple correlative immunolabeling for light and electron microscopy using fluorophores and colloidal metal particles. J Histochem Cytochem 55:983–990

    Article  CAS  Google Scholar 

  47. Kann ML, Fouquet JP (1989) Comparison of LR white resin, Lowicryl K4M and epon postembedding procedures for immunogold staining of actin in the testis. Histochemistry 91:221–226

    Article  CAS  Google Scholar 

  48. Kapoor TM, Lampson MA, Hergert P, Cameron L, Cimini D, Salmon ED, McEwen BF, Khodjakov A (2006) Chromosomes can congress to the metaphase plate before biorientation. Science 311:388–391

    Article  CAS  Google Scholar 

  49. Keene DR, Tufa SF, Lunstrum GP, Holden P, Horton WA (2008) Confocal/TEM overlay microscopy: a simple method for correlating confocal and electron microscopy of cells expressing GFP/YFP fusion proteins. Microsc Microanal 14:342–348

    Article  CAS  Google Scholar 

  50. Knoblauch C, Griep M, Friedrich C (2014) Recent advances in the field of bionanotechnology: an insight into optoelectric bacteriorhodopsin, quantum dots, and noble metal nanoclusters. Sensors (Basel) 14:19731–19766

  51. Kramarcy NR, Sealock R (1991) Commercial preparations of colloidal gold–antibody complexes frequently contain free active antibody. J Histochem Cytochem 39:37–39

    Article  CAS  Google Scholar 

  52. Lippincott-Schwartz J, Manley S (2009) Putting super-resolution fluorescence microscopy to work. Nat Methods 6:21–23

    Article  CAS  Google Scholar 

  53. Liu W, Mitra D, Joshi V, Powell R, Hainfeld J, Serrano-Velez J, Torres-Vasquez I, Rosa-Molinar E, Takvorian P (2011) EnzMet for versatile, highly sensitive light and electron microscopy staining. Microsc Microanal 17(2):116–117

    Article  CAS  Google Scholar 

  54. Luo Z, Robinson JM (1992) Co-localization of an endocytic marker and acid phosphatase in a tubular/reticular compartment in macrophages. J Histochem Cytochem 40:93–103

    Article  CAS  Google Scholar 

  55. Lübke J (1993) Photoconversion of diaminobenzidine with different fluorescent neuronal markers into light and electron dense reaction product. Microsc Res Tech 1:2–14

    Article  Google Scholar 

  56. Luby-Phelps K, Ning G, Fogerty J, Besharse JC (2003) Visualization of identified GFP-expressing cells by light and electron microscopy. J Histochem Cytochem 51:271–274

    Article  CAS  Google Scholar 

  57. Lyden TW, Anderson CL, Robinson JM (2002) The endothelium but not the syncytiotrophoblast of the human placenta expresses caveolae. Placenta 23:640–652

    Article  Google Scholar 

  58. Maco B, Holtmaat A, Jorstad A, Fua P, Knott GW (2014) Correlative in vivo 2-photon imaging and focused ion beam scanning electron microscopy: 3D analysis of neuronal ultrastructure. Methods Cell Biol 124:339–361

    Article  Google Scholar 

  59. Maranto AR (1982) Neuronal mapping: a photooxidation reaction makes Lucifer yellow useful for electron microscopy. Science 217:953–955

  60. Martin OC, Pagano RE (1994) Internalization and sorting of a fluorescent analogue of glucosylceramide to the Golgi apparatus of human skin fibroblasts: utilization of endocytic and nonendocytic transport mechanisms. J Cell Biol 125:769–781

    Article  CAS  Google Scholar 

  61. Mayer G, Leone RD, Hainfeld JF, Bendayan M (2000) Introduction of a novel HRP substrate-Nanogold probe for signal amplification in immunocytochemistry. J Histochem Cytochem 48:461–470

    Article  CAS  Google Scholar 

  62. McDonald KL (2009) A review of high-pressure freezing preparation techniques for correlative light and electron microscopy of the same cells and tissues. J Microsc 235:273–281

    Article  CAS  Google Scholar 

  63. Meisslitzer-Ruppitsch C, Vetterlein M, Stangl H, Maier S, Neumüller J, Freissmuth M, Pavelka M, Ellinger A (2008) Electron microscopic visualization of fluorescent signals in cellular compartments and organelles by means of DAB-photoconversion. Histochem Cell Biol 130:407–419

    Article  CAS  Google Scholar 

  64. Metscher BD, Müller GB (2011) MicroCT for molecular imaging: quantitative visualization of complete three dimensional distributions of gene products in embryonic limbs. Dev Dyn 240:2301–2308

  65. Micheva KD, Smith SJ (2007) Array tomography: a new tool for imaging the molecular architecture and and ultrastructure of neural circuits. Neuron 55:25–36

    Article  CAS  Google Scholar 

  66. Micheva KD, O’Rourke N, Busse B, Smith SJ (2010) Array tomography: high-resolution three-dimensional immunofluorescence. Cold Spring Harb Protoc. doi:10.1101/pdb.top89

    Google Scholar 

  67. Mironov AA, Beznoussenko GV (2009) Correlative microscopy: a potent tool for the study of rare or unique cellular and tissue events. J Micros 235:308–321

    Article  CAS  Google Scholar 

  68. Modla S, Czymmek KJ (2011) Correlative microscopy: a powerful tool for exploring neurological cells and tissues. Micron 42:773–792

  69. Mori M, Ishikawa G, Takeshita T, Goto T, Robinson JM, Takizawa T (2006) Ultrahigh-resolution immunofluorescence microscopy using ultrathin cryosections: subcellular distribution of caveolin-1α and CD31 in human placental endothelial cells. J Electron Micros 55:107–112

    Article  CAS  Google Scholar 

  70. Murphy GE, Narayan K, Lowekamp BC, Hartnell LM, Heymann JA, Fu J, Subramaniam S (2011) Correlative 3D imaging of whole mammalian cell with light and electron microscopy. J Struct Biol 176:268–278

    Article  Google Scholar 

  71. Olorundare OE, Simmons SR, Albrecht RM (1992) Cytochalasin D and E: effects on fibrinogen receptor movement and cytoskeletal reorganization in fully spread, surface-activated platelets: a correlative light and electron microscopic investigation. Blood 79:99–109

    CAS  Google Scholar 

  72. Oorschot VMJ, Sztal TE, Bryson-Richardson RJ, Ramm G (2014) Immuno correlative light and electron microscopy on tokuyasu cryosections. Methods Cell Biol 224:241–258

    Article  Google Scholar 

  73. Peckys DB, Dukes MJ, de Jong N (2014) Correlative fluorescence and electron microscopy of quantum dot labeled proteins on whole cells in liquid. Methods Mol Biol 1117:527–540

    Article  CAS  Google Scholar 

  74. Peddie CJ, Blight K, Wilson E, Melia C, Marrison J, Carzaniga R, Domart MC, O’Toole P, Larijani B, Collinson LM (2014) Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells. Ultramicroscopy 143:3–14

    Article  CAS  Google Scholar 

  75. Pombo A, Hollinshead M, Cook PR (1999) Bridging and resolution gap: imaging the same transcription factories in cryosections by light and electron microscopy. J Histochem Cytochem 47:471–480

    Article  CAS  Google Scholar 

  76. Powell RD, Halsey CMR, Hainfeld JF (1998) Combined fluorescent and gold immunoprobes: reagents and methods for correlative light and electron microscopy. Microsc Res Tech 42:2–12

    Article  CAS  Google Scholar 

  77. Powell R, Joshi V, Thelian A, Liu W, Takvorian P, Cali A, Hainfeld J (2006) Light and electron microscopy of Microsporida using enzyme metallography. Microsc Microanal 12(Suppl 2):424–425

    Article  Google Scholar 

  78. Powell R, Joshi V, Takvorian P, Cali A, Hainfeld J (2007) Correlative enzymatic and gold probes for light and electron microscopy. Microsc Microanal 13(Suppl 2):244–245

    Google Scholar 

  79. Powell RD, Hainfeld JF (2011) Preparation and high-resolution microscopy of gold cluster labeled nucleic acid conjugates and nanodevices. Micron 42:163–174

    Article  CAS  Google Scholar 

  80. Ribrioux S, Kleymann G, Haase W, Heitmann K, Ostermeier C, Michel H (1996) Use of Nanogold- and fluorescent-labeled antibody Fv fragments in immunocytochemistry. J Histochem Cytochem 44:207–213

    Article  CAS  Google Scholar 

  81. Rieder CL, Cassels G (1999) Correlative light and electron microscopy of mitotic cells in monolayer cultures. Methods Cell Biol 61:297–315

    Article  CAS  Google Scholar 

  82. Robinson JM, Karnovsky MJ (1983) Ultrastructural localization of several phosphatases with cerium. J Histochem Cytochem 31:1197–1208

    Article  CAS  Google Scholar 

  83. Robinson JM, Takizawa T (2009) Correlative fluorescence and electron microscopy in tissues: immunocytochemistry. J Microsc 235:259–272

  84. Robinson JM, Takizawa T (2012) Correlative fluorescence and transmission electron microscopy in tissues. Methods Cell Biol 111:37–57

  85. Robinson JM, Takizawa T, Vandre DD, Burry RW (1998) Ultrasmall immunogold particles: important probes for immunocytochemistry. Micros Res Tech 42:13–23

    Article  CAS  Google Scholar 

  86. Robinson JM, Takizawa T, Vandre DD (2000) Enhanced labeling efficiency using ultrasmall immunogold probes: immunocytochemistry. J Histochem Cytochem 48:487–492

    Article  CAS  Google Scholar 

  87. Robinson JM, Takizawa T, Pombo A, Cook PR (2001) Correlative fluorescence and electron microscopy on ultrathin cryosections: bridging the resolution gap. J Histochem Cytochem 49:803–808

    Article  CAS  Google Scholar 

  88. Robinson JM, Takizawa T, Vandre DD (2002) Glod cluster immunoprobes: light and electron microscopy. In: Hacker GW, Gu J (eds) Gold and silver staining: techniques in molecular morphology. CRC Press, Boca Raton, pp 177–187, Chapter 12

    Google Scholar 

  89. Roth J (1996) The silver anniversary of gold: 25 years of the colloidal gold marker system for immunocytochemistry and histochemistry. Histochem Cell Biol 106:1–8

    Article  CAS  Google Scholar 

  90. Roth J, Bendayan M, Carlemalm E, Villiger W, Garavito M (1981) Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem 29:663–671

    Article  CAS  Google Scholar 

  91. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    Article  CAS  Google Scholar 

  92. Sauer M (2013) Localization microscopy coming of age: from concepts to biological impact. J Cell Sci 126:3505–3513

    Article  CAS  Google Scholar 

  93. Schroeder-Reiter E, Houben A, Grau J, Wanner G (2006) Characterization of a peg-like terminal NOR structure with light microscopy and high-resolution scanning electron microscopy. Chromosoma 115:50–59

  94. Schwarz H, Humbel BM (2007) Correlative light and electron microscopy using immunolabeled resin sections. Methods Mol Biol 369:229–256

    Article  CAS  Google Scholar 

  95. Schwarz H, Humbel BM (2014) Correlative light and electron microscopy using immunolabeled sections. Methods Mol Biol 1117:559–592

    Article  CAS  Google Scholar 

  96. Segond von Banchet G, Schindler M, Hervieu GJ, Beckmann B, Emson PC, Heppelmann B (1999) Distribution of somatostain receptor subtypes in rat lumbar spinal cord examined with gold-labelled somatostatin and anti-receptor antibodies. Brain Res 816:254–257

    Article  CAS  Google Scholar 

  97. Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB, Davidson MW, Jin Y, Ellisman MH, Tsien RY (2011) A genetically encoded tag for correlated light and electron microscopy of intact cell, tissues, and organisms. PLoS Biol 9:e1001041

    Article  CAS  Google Scholar 

  98. Sun XJ, Tolbert LP, Hildebrand JG (1995) Using laser scanning confocal microscopy as a guide for electron microscopic study: a simple method for correlation of light and electron microscopy. J Histochem Cytochem 43:329–335

    Article  CAS  Google Scholar 

  99. Takizawa T, Robinson JM (1994) Use of 1.4-nm immunogold particles for immunocytochemistry on ultra-thin cryosections. J Histochem Cytochem 42:1615–1623

    Article  CAS  Google Scholar 

  100. Takizawa T, Robinson JM (2003) Ultrathin cryosections: an important tool for immunofluorescence and correlative microscopy. J Histochem Cytochem 51:707–714

    Article  CAS  Google Scholar 

  101. Takizawa T, Robinson JM (2003) Correlative microscopy of ultrathin cryosections is a powerful tool for placental research. Placenta 24:557–565

    Article  CAS  Google Scholar 

  102. Takizawa T, Suzuki K, Robinson JM (1998) Correlative microscopy using FluoroNanogold on ultrathin cryosections. Proof of principle. J Histochem Cytochem 46:1097–1102

    Article  CAS  Google Scholar 

  103. Takizawa T, Anderson CL, Robinson JM (2003) A new method to enhance contract of ultrathin cryosections for immunoelectron microscopy. J Histochem Cytochem 51:31–39

    Article  CAS  Google Scholar 

  104. Takizawa T, Anderson CL, Robinson JM (2005) A novel FcγR-defined, IgG-containing organelle in placental endothelium. J Immunol 175:2331–2339

    Article  CAS  Google Scholar 

  105. Tchelidze P, Kaplan H, Beorchia A, O’Donohue M-F, Bobichon H, Lalum N, Wortham L, Ploton D (2008) Three-dimensional reconstruction of nuclear components by electron microscope tomography. Methods Mol Biol 463:137–158

    Article  CAS  Google Scholar 

  106. Tokuyasu KT (1973) A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol 57:551–565

    Article  CAS  Google Scholar 

  107. Torres-Vazquez II, Serrano-Velez JL, Rosa-Molinar E, Orange F, Guinel MJ, Koutis I, Wolf J, Laimer C, Joshi V, Powell RD (2012) EnzMet™: an enzymatic metallography reagent for accurately delineating neuronal boundaries for segmenting Gap junction-coupled neurons in their three-dimensional space. Microsc Microanal 18(S02):660–661

    Article  Google Scholar 

  108. Van der Wel N, Fluitsma DM, Dascher CC, Brenner MB, Peters PJ (2005) Subcellular localization of myobacteria in tissues and detection of lipid antigens in organelles using cryo-techniques for light and electron microscopy. Curr Opin Microbiol 8:323–330

    Article  CAS  Google Scholar 

  109. Vicidomini G, Gagliani M, Cortese K, Krieger J, Bruescher P, Bianchini P, Boccacci P, Tacchetti C, Diaspro A (2010) A novel approach for correlative light electron microscopy analysis. Micros Res Tech 73:215–224

    Google Scholar 

  110. Westphal V, Hell SW (2005) Nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett 94:143903

    Article  CAS  Google Scholar 

  111. Wu P, Brand L (1994) Resonance energy transfer: methods and applications. Anal Biochem 218:1–13

    Article  CAS  Google Scholar 

  112. Xiong H, Zhou Z, Zhu M, Lv X, Li A, Li S, Li L, Yang T, Wang S, Yang Z, Xu T, Luo Q, Gong H, Zeng S (2014) Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging. Nat Commun 5:3992

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grant HD058084 (JMR). We wish to acknowledge the staff in the Campus Microscopy and Imaging Facility at the Ohio State University Wexner Medical Center for assistance in collecting some of the data presented in this review.

Conflict of interest

JFH is the President of and RDP is employed by Nanoprobes, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Powell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takizawa, T., Powell, R.D., Hainfeld, J.F. et al. FluoroNanogold: an important probe for correlative microscopy. J Chem Biol 8, 129–142 (2015). https://doi.org/10.1007/s12154-015-0145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-015-0145-1

Keywords

Navigation