Skip to main content

Advertisement

Log in

Mitochondrial protein alterations in a familial peripheral neuropathy caused by the V144D amino acid mutation in the sphingolipid protein, SPTLC1

  • Original Article
  • Published:
Journal of Chemical Biology

Abstract

Axonal degeneration is the final common path in many neurological disorders. Subsets of neuropathies involving the sensory neuron are known as hereditary sensory neuropathies (HSNs). Hereditary sensory neuropathy type I (HSN-I) is the most common subtype of HSN with autosomal dominant inheritance. It is characterized by the progressive degeneration of the dorsal root ganglion (DRG) with clinical symptom onset between the second or third decade of life. Heterozygous mutations in the serine palmitoyltransferase (SPT) long chain subunit 1 (SPTLC1) gene were identified as the pathogenic cause of HSN-I. Ultrastructural analysis of mitochondria from HSN-I patient cells has displayed unique morphological abnormalities that are clustered to the perinucleus where they are wrapped by the endoplasmic reticulum (ER). This investigation defines a small subset of proteins with major alterations in abundance in mitochondria harvested from HSN-I mutant SPTLC1 cells. Using mitochondrial protein isolates from control and patient lymphoblasts, and a combination of 2D gel electrophoresis, immunoblotting and mass spectrometry, we have shown the increased abundance of ubiquinol-cytochrome c reductase core protein 1, an electron transport chain protein, as well as the immunoglobulin, Ig kappa chain C. The regulation of these proteins may provide a new route to understanding the cellular and molecular mechanisms underlying HSN-I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bejaoui K, Wu C, Scheffler MD, Haan G, Ashby P, Wu L, De Jong P, Brown RH Jr (2001) SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nat Genet 27:261–262

    Article  CAS  Google Scholar 

  2. Bozidis P, Williamson CD, Colberg-Poley AM (2007) Isolation of endoplasmic reticulum, mitochondria, and mitochondria-associated membrane fractions from transfected cells and from human cytomegalovirus-infected primary fibroblasts. Curr Protoc Cell Biol. doi:10.1002/0471143030.cb0327s37

  3. Butt RH, Coorssen JR (2005) Postfractionation for enhanced proteomic analyses: routine electrophoretic methods increase the resolution of standard 2D-PAGE. J Proteome Res 4:982–991

    Article  CAS  Google Scholar 

  4. Churchward M, Butt RH, Lang J, Hsu K, Coorssen J (2005) Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis. Proteome Sci 3:5

    Article  Google Scholar 

  5. Crofts AR (2004) The cytochrome bc1 complex: function in the context of structure. Annu Rev Physiol 66:689–733

    Article  CAS  Google Scholar 

  6. Dawkins JL, Hulme DJ, Brahmbhatt SB, Auer-Grumbach M, Nicholson GA (2001) Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat Genet 27:309–312

    Article  CAS  Google Scholar 

  7. Dedov V, Dedova I, Merrill A, Nicholson G (2004) Activity of partially inhibited serine palmitoyltransferase is sufficient for normal sphingolipid metabolism and viability of HSN1 patient cells. Biochim Biophys Acta 1688(2):168–175

    Article  CAS  Google Scholar 

  8. Drose S, Brandt U, WittigI (2014) Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim Biophys Acta 1844(8):1344–1354. doi:10.1016/j.bbapap.2014.02.006

  9. Duffy LM, Chapman AL, Shaw PJ, Grierson AJ (2011) Review: the role of mitochondria in the pathogenesis of amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 37:336–352

    Article  CAS  Google Scholar 

  10. Dyck PJ, Thomas PK (2005) Dyck: peripheral neuropathy, 4th edn. Mosby Elsevier, Philadelphia

    Google Scholar 

  11. Gauci VJ, Padula MP, Coorssen JR (2013) Coomassie blue staining for high sensitivity gel-based proteomics. J Proteomics 90:96–106

    Article  CAS  Google Scholar 

  12. Hanada K (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta 1632:16–30

    Article  CAS  Google Scholar 

  13. Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411–5419

    Article  CAS  Google Scholar 

  14. Hornemann T, Richard S, Rutti M, Wei Y, Von-Eckardstein A (2006) Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. J Biol Chem 281(49):37275–37281

    Article  CAS  Google Scholar 

  15. Hutchinson AT, Ramsland PA, Jones DR, Agostino M, Lund ME, Jennings CV, Bockhorni V, Yuriev E, Edmundson AB, Raison RL (2010) Free Ig light chains interact with sphingomyelin and are found on the surface of myeloma plasma cells in an aggregated form. J Immunol 185:4179–4188

    Article  CAS  Google Scholar 

  16. Kindt TJ, Goldsby RA, Osborne BA, Kuby J (2007) Kuby immunology. W.H. Freeman, New York

    Google Scholar 

  17. Kwong JQ, Beal MF, Manfredi G (2006) The role of mitochondria in inherited neurodegenerative diseases. J Neurochem 97:1659–1675

    Article  CAS  Google Scholar 

  18. Mandon EC, Ehses I, Rother J, Van Echten G, Sandhoff K (1992) Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. J Biol Chem 267:11144–11148

    CAS  Google Scholar 

  19. Manfredi G, Beal MF (2000) The role of mitochondria in the pathogenesis of neurodegenerative diseases. Brain Pathol 10:462–472

    Article  CAS  Google Scholar 

  20. Marshall LL, Stimpson SE, Hyland RA, Coorssen JR, Myers SJ (2014) Increased lipid droplet accumulation associated with a peripheral sensory neuropathy. J Chem Biol 7:67–76

    Article  Google Scholar 

  21. McCampbell A, Truong D, Broom D, Allchorne A, Gable K, Cutler RG, Mattson M, Woolf C, Frosch M, Harmon J, Dunn T, Brown R (2005) Mutant SPTLC1 dominantly inhibits serine palmitoyltransferase activity in vivo and confers an age-dependent neuropathy. Hum Mol Genet 14(22):3507–3521

    Article  CAS  Google Scholar 

  22. Miller KE, Sheets MP (2004) Axonal mitochondrial transport and potential are correlated. J Cell Sci 117:2791–2804

  23. Myers S, Malladi C, Hyland R, Bautista T, Boadle R, Robinson P, Nicholson G (2014) Mutantions in the SPTLC1 protein cause mitochondrial structual abnormalisites and endoplasmic reticulum stress in lymphoblasts. DNA Cell Biol 33(7):399–407

    Article  CAS  Google Scholar 

  24. Vaseva AV, Moll UM (2013) Identification of p53 in mitochondria. Methods Mol Biol 962:75–84

    Article  CAS  Google Scholar 

  25. Verhoeven K, Timmerman V, Mauko B, Pieber TR, De Jonghe P, Auer-Grumbach M (2006) Recent advances in hereditary sensory and autonomic neuropathies. Curr Opin Neurol 19:474–480

    Article  CAS  Google Scholar 

  26. Wei J, Yerokun Y, Liepelt M, Momin A, Wang E, Hanada K, Merril AH Jr. (2007) 2–1 Serine palmitoyltransferase. Sphingolipid Biology. Springer, Japan, p 25–27

  27. Wright EP, Partridge MA, Padula MP, Gauci VJ, Malladi CS, Coorssen JR (2014) Top-down proteomics: enhancing 2D gel electrophoresis from tissue processing to high-sensitivity protein detection. Proteomics 14:872–889

    Article  CAS  Google Scholar 

  28. Yamamoto K, Yagi H, Lee YH, Kardos J, Hagihara Y, Naiki H, Goto Y (2010) The amyloid fibrils of the constant domain of immunoglobulin light chain. FEBS Lett 584:3348–3353

    Article  CAS  Google Scholar 

  29. Yard B, Carter L, Johnson K, Overton I, Dorward M, Liu H, McMahon S, Oke M, Puech D, Barton G, Naismith J, Campopiano D (2007) The structure of serine palmitoyltransferase; gateway to sphingolipid biosynthesis. J Mol Biol 370(5):870–886

    Article  CAS  Google Scholar 

  30. Yasuda S, Nishijima M, Hanada K (2003) Localization, topology, and function of the LCB1 subunit of serine palmitoyltransferase in mammalian cells. J Biol Chem 278:4176–4183

    Article  CAS  Google Scholar 

  31. Zhu Y, Li M, Wang X, Jin H, Liu S, Xu J, Chen Q (2012) Caspase cleavage of cytochrome c1 disrupts mitochondrial function and enhances cytochrome c release. Cell Res 22:127–141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Garth Nicholson (Molecular Medicine Laboratory and Northcott Neuroscience Laboratory Anzac Research Institute, Sydney) for providing all EBV-transformed lymphoblast lines used in this study. SES was supported by APA Research Scholarship and the UWS School of Science and Health Postgraduate research fund. SJM notes the continuing support of an anonymous private foundation. JRC acknowledges the support of the UWS School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jens R. Coorssen or Simon J. Myers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stimpson, S.E., Coorssen, J.R. & Myers, S.J. Mitochondrial protein alterations in a familial peripheral neuropathy caused by the V144D amino acid mutation in the sphingolipid protein, SPTLC1. J Chem Biol 8, 25–35 (2015). https://doi.org/10.1007/s12154-014-0125-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-014-0125-x

Keywords

Navigation